
CS181CA-PO: Computer Architecture Fall 2025, Multicore Architectures

Multicore Processors

1

Check In 6 today!
HW3 due Friday

CS181CA-PO: Computer Architecture Fall 2025, Multicore Architectures2

Image credit: https://
store.flagshiptech.com/

2-8ghz-4mb-800mhz-intel-xeon-dual-
core-cpu-paxville-sl8ma-td428/

Intel Xeon Dual-Core
Processor (2005) ➡ first

commodity multicore

From 2000—2005,
techniques to exploit ILP for
performance slowed down

Academics had been
studying “theoretical”

multiprocessor coordination
since the 1950s

Growing interest in high end
servers due to the “data-

intensive applications on the
Internet”

CS181CA-PO: Computer Architecture Fall 2025, Multicore Architectures

Outline

• What do multicore systems look like?

• Challenges of multicore systems

• Check-In 6

3

CS181CA-PO: Computer Architecture Fall 2025, Multicore Architectures

Revisiting Multithreaded Programs

4

void *thread_fn(void *args) {
// do parallel things!
lock.acquire();
// do sequential things!
lock.release();

}

int main(int argc, char **argv) {
pthread_t tid[num_threads];

for (int i = 0; i < num_threads; i++) {
pthread_create(&tid[i], NULL, thread_fn, (void *) NULL);

}

 for (int i = 0; i < num_threads; i++) {
pthread_join(&tid[i], NULL);

}

return 0;
}

System calls!

The operating system acts as the
interface for software to interact

with hardware directly!
On pthread_create, construct a

process structure with the
instruction address of thread_fn
as the program counter and the

args as the stack state

CS181CA-PO: Computer Architecture Fall 2025, Multicore Architectures

Revisiting Multithreaded Programs (under the hood)

• Because the pthread functions are implemented as system calls, thread-level
parallelism is highly user-facing!

• The operating system creates process structs as variables, and they live in
the operating system’s reserved address space

• After the processes are created, the operating system can trigger an interrupt
(e.g., a signal implemented in hardware as a special communication type) to
other processors in the system to redirect their program counter to the new
process contexts

5

CS181CA-PO: Computer Architecture Fall 2025, Multicore Architectures

Suppose a program is written with 100 threads and run
on a 100-core multiprocessor. What is the expected
speedup of the program relative to running the same

program sequentially?

6

Chat with your neighbor(s)!

CS181CA-PO: Computer Architecture Fall 2025, Multicore Architectures

The Speedup Pitfall with Amdahl’s Law

• To understand speedup due to thread-level parallelism, we need to
understand how much of the program is parallelizable versus being sequential

• Amdahl’s Law: speedup = ((1 - % parallel) + (% parallel / speedup parallel))-1

• Example: suppose a program that is 85% parallelizable is written for 100
cores with 75 threads

7

Speedup = ((1 - .85) + (.85 / 75))-1
Speedup = 1 / (.15 + .0113)
Speedup = 6.2 times speedup

Speedup = ((1 - .85) + (.85 / 100))-1
Speedup = 1 / (.15 + .0085)
Speedup = 6.3 times speedup

80 = ((1 - p) + (p / 100))-1
80((1 - p) + (p / 100)) = 1
80(1 - p) + 80(p / 100) = 1

80 - 80p + .8p = 1
-79.2p = -79

p = .9974

100
threads?

How
parallel to
get 80x?

Takeaway: programs require very high
percentages of parallelizable regions to

fully benefit from multicore!

CS181CA-PO: Computer Architecture Fall 2025, Multicore Architectures

Simple Multicore Architectures

8

CPU

L1 Cache

L2 Cache L3 Cache

CPU

L1 Cache

L2 Cache

Main Memory

Describes a centralized
shared-memory

multiprocessor or a symmetric
multiprocessor

Uniform access
latency to all data

in memory

Limits the number of cores
that can fit within a single

processor chip

CS181CA-PO: Computer Architecture Fall 2025, Multicore Architectures

Distributed Memory Multiprocessor Architectures

9

CPUMain Memory 0

CPUMain Memory 1

CPUMain Memory 2

CPU Main Memory 3

CPU Main Memory 4

CPU Main Memory 5

In
te

rc
on

ne
ct

 N
et

w
or

k

0x0000 ➡
0x00ff

0x0100 ➡
0x01ff

0x0200 ➡
0x02ff

0x0300 ➡
0x03ff

0x0400 ➡
0x04ff

0x0500 ➡
005ff

Non-uniform
access latency to

all data in memory!

How to do
consistency?

Snooping!

CS181CA-PO: Computer Architecture Fall 2025, Multicore Architectures

Takeaways

• Multiprocessors allow programmers to utilize thread-level parallelism without
worrying about constraints within a processor

• Thread-level parallelism is limited by Amdahl’s law

• Multiprocessors may be organized as centralized shared-memory multicore or
distributed-memory multicore architectures

10

