
CS181CA-PO: Computer Architecture Fall 2025, Branch Prediction

Branch Prediction

1

Lab Tonight: Homework 3 
Gear-Up Session! 

(Autograder coming by the 
end of the week)



CS181CA-PO: Computer Architecture Fall 2025, Branch Prediction

Outline

• Finish formalization of the BTB


• Motivate branch prediction strategies


• Overview branch prediction algorithms

2



CS181CA-PO: Computer Architecture Fall 2025, Branch Prediction

PC

In
st

ru
ct

io
n 

M
em

or
y

Adder
4

MUX …
…

PC 0 Pred Target 0

PC 1 Pred Target 1

PC 2 Pred Target 2

From Monday: Branch-Target Buffers

3



CS181CA-PO: Computer Architecture Fall 2025, Branch Prediction

Data Path Pipeline with BTB

Send PC to 
memory and BTB Entry found?

Send predicted PC 
to instruction 

memory

Is the instruction a 
taken branch?

Taken 
branch?

Yes

No Send current PC 
to instruction 

memory
Normal instruction 

execution

Enter current PC 
and next PC into 

BTB

No

Yes

Branch correctly 
predicted, normal 

instruction execution

Mispredicted branch, 
use hazard checking 

unit logic

No

Yes

4



CS181CA-PO: Computer Architecture Fall 2025, Branch Prediction

Our BTB is essentially a cache for branch 
instruction targets. Do all hits to the BTB 

provide the same benefit? Why or why not?

Chat with your neighbor(s)!

5



CS181CA-PO: Computer Architecture Fall 2025, Branch Prediction

Branch Target Buffers and Instruction Memory

• Recall, instruction memory does not necessarily fetch instructions in a well-
defined amount of time


• ➡ if the processor issues a fetch for an instruction at 0xff00 then 0xff40, the 
memory system may respond with 0xff40 first if it was an instruction cache hit


• We could start executing 0xff40 before 0xff00 and later correcting ourselves if 
a dependence existed between these instructions ➡ this processor “pre-
processing” is called runahead 

• Implementing runahead uses same mechanism as a control hazard! We are 
“executing the unknown”

6



CS181CA-PO: Computer Architecture Fall 2025, Branch Prediction

Fetch Decode Execute Memory Writeback

Fetch Decode Execute Memory Writeback

Fetch Decode Execute Memory Writeback

Cost of misprediction: the 
number of cycles to delay in 
order to fetch from the true 

next instruction

Goal: reduce the number of 
mispredictions so that the 

cost of misprediction is 
reduced

Towards Effective Branch Prediction

7



CS181CA-PO: Computer Architecture Fall 2025, Branch Prediction

Branch Prediction

• To minimize the number of mispredicted branches, we deploy branch prediction algorithms to face 
the minimum number of branch delays that we possibly can


• We can make these decisions on a local (e.g., per program counter) or global (e.g., for all branches) 
granularity


• These algorithms may be static in which heuristics of application behavior drive the decision making 
procedure or dynamic in which application runtime behaviors influence the subsequent predictions


• ➡ (static) Assume Branch Not Taken: if we assume that most instructions are not branches, then 
our predicted next program counter should be correct in these cases


• ➡ (static) Assume Branches Hit and are Unconditional: if we track PCs and their target in the 
BTB, assume that these branches are unconditional and use the target associated with this PC as 
the next address to fetch

How are we going to deal 
with conditional 

branches??

8



CS181CA-PO: Computer Architecture Fall 2025, Branch Prediction

One-Bit Branch Predictor

Pred Target 0PC 0

Pred Target 1PC 1

Pred Target 2PC 2

Pred Target 3PC 3

T/NT

Prediction Bit

T/NT

T/NT

T/NT

1. Lookup current PC in BTB 
2. If not there, assume not a 

branch and fetch current PC 
3. If predicting taken, then fetch 

the predicted target 
4. Otherwise fetch the current PC

9



CS181CA-PO: Computer Architecture Fall 2025, Branch Prediction

Think about the types of branches that we’ve described 
thus far in terms of the high-level language syntax leading 

to their use. Given this, come up with a code snippet in 
which the one-bit branch predictor does poorly.

Chat with your neighbor(s)!

As soon as we have a 
difference in behavior for 
one-off cases, it messes 
with the predictor for that 

PC!

10



CS181CA-PO: Computer Architecture Fall 2025, Branch Prediction

Two-Bit Branch Predictor

Pred Target 0PC 0

Pred Target 1PC 1

Pred Target 2PC 2

Pred Target 3PC 3

T/NT

Prediction 
Bits

T/NT

T/NT
T/NT

T/NT
T/NT

T/NT
T/NT

T/NT

Prediction Bit

T/NT

T/NT

T/NT

T T

NTNT

01

2 3

Taken

Not TakenTa
ke

n

N
ot Taken

Not Taken

Taken

Our 2-bit branch predictor 
is “sticky” ➡ don’t make 
rash decisions based on 

one behavior

11



CS181CA-PO: Computer Architecture Fall 2025, Branch Prediction

Advanced Branch Prediction

• Correlating Branch Predictors: a one- or two-bit branch predictor examines 
branches in isolation, but in practice the outcome of many branches depends 
on the outcome of other branches (think the inside of a nested for-loop or an 
if-statement within a while-loop) 


• ➡ for the current PC, track the outcome (taken versus not taken) from the 
last n loops into account in your prediction bits


• Tournament Branch Predictors: maintain the information to implement all 
strategies of branch prediction (local/global, 1-bit, 2-bit, correlating/non-
correlating) and predict which prediction scheme works best!

12



CS181CA-PO: Computer Architecture Fall 2025, Branch Prediction

On the Effectiveness of Branch Prediction

Image Credit: CA: AQA 
(course textbook)

13



CS181CA-PO: Computer Architecture Fall 2025, Branch Prediction

Takeaways

• To mitigate control hazards, we can predict the target next instruction based 
on tracking execution history in the processor


• We can implement dynamic branch predictors to implement this behavior with 
very small modifications to the BTB


• Branch prediction is an extraordinarily well studied problem and is, for intents 
and purposes, solved ➡ modern branch predictors almost guarantee the 
correct outcome of a predicted branch

14


