(Re-)Introducing Control
Hazards

.| Colloquium today!

Check-In 5 in class

-/ Homework 3 to be
released Monday

(" )

) Happy Halloween! C)

Y, 0 Y,

CS181CA-PO: Computer Architecture 1 Fall 2025, Re-Introducing Control Hazards



Outline

* Pipelining a data path with branch instructions
* (Re-) Introducing control hazards

o Strategies to work around control hazards

CS181CA-PO: Computer Architecture 2 Fall 2025, Re-Introducing Control Hazards



Pipelining the Branching Data Path (attempt 2)

Instruction Memory

@oder Unit

CS181CA-PO: Computer Architecture

]

Reducing the work
to achieve In Fetch

-

Updated PC value
cannot be
determined until

after decode... )

)

MUX

Register RN > ALU Data
.
MUX F’/

Memory

Fall 2025, Re-Introducing Control Hazards



Pipelining the Branching Data Path (attempt 2)

Fetch Decode

CS181CA-PO: Computer Architecture

Execute

Fetch

Memory | Writeback

Decode Execute

Fetch

Memory | Writeback

Decode

Execute

Memory | Writeback

.

Inefficient!

There is now a data hazard
between the Decode (and

compute new PC) stage and the

Fetch stage on the PC register

J

Fall 2025, Re-Introducing Control Hazards



Pipelining the Branching Data Path (attempt 3)

Chat with your neighbor(s)!
Adder Not until after
When will our MUX be able to Execute!

resolve which input to select?

Register N > ALU Data
File .

MUX —>/ Memory

~\

MUX

Adder

ks

-
O
S
)
=
c
O
jd
O
-
-
jd
7))
=

@oder Unit

MUX

CS181CA-PO: Computer Architecture 5 Fall 2025, Re-Introducing Control Hazards

(



Pipelining the Branching Data Path (attempt 3)

Fetch Decode

Execute

Memory | Writeback

CS181CA-PO: Computer Architecture

Execute

Memory | Writeback

Decode

Execute Memory

Inefficient!

The maximum achievable parallelism if we
wait for the branch to be resolved is 2
Instructions in the pipeline at a time!

Fall 2025, Re-Introducing Control Hazards



4

Control Hazards Hardware

* |f it takes several cycles to know what the appropriate next program counter
value should be, then it may be the case that our processor executes
Instructions that are incorrect relative to the expected program behavior

* Executing instructions on the incorrect side of a branch is called a control
hazard as It will lead to incorrect instructions in the pipeline

* |f our processor implements a hazard checking unit, then the unit must also
check to see If incorrect instructions are in the pipeline due to control hazards
and appropriately stall/bubble the stages

CS181CA-PO: Computer Architecture 7 Fall 2025, Re-Introducing Control Hazards



Strategies to Workaround Control Hazards

CS181CA-PO: Computer Architecture

Wldirl, O
1di rg, 1
1di r3, 4
w1dir4, 7
1di r5, 2

L bltrl, r3, 10
4 addrl, rl, r2
) mul r4, r4, r5
& jmp 6

end.

I

We don’t know the
answer!

~

We could wait or
guess!

Fall 2025, Re-Introducing Control Hazards



What to Fetch Next

 Seeing as we will not know the true value of the PC until after the branch is
evaluated (which could be as late as after Execute), it may seem as though we
have to delay our next fetch until we know the PC

» Alternatively, we can try optimistically making an assumption or prediction
about what the next PC will be and correct ourselves later if we were wrong (we
will talk about how to do this next week)

* For example, we could assume that the instruction is always either not a branch
or that the branch iIs not taken whenever we reach a control instruction

* Alternatively, we could track certain behaviors to try to predict whether the
branch was or was not taken

CS181CA-PO: Computer Architecture 9 Fall 2025, Re-Introducing Control Hazards



Takeaways

By adding control instructions, our programs can become more robust but
they also add complexity to the underlying hardware

» Updating the control flow requires new hardware logic to update the PC and
pipelining logic must change accordingly

By updating the pipeline, we introduce control hazards that must be mitigated

CS181CA-PO: Computer Architecture 10 Fall 2025, Re-Introducing Control Hazards



