No colloquium today

Recontextualizing the Memory

Fall 2025, Recontextualizing the Memory System

Cramming more components
onto integrated circuits

LOG2z OF THE
NUMBER OF COMPONENTS
PER INTEGRATED FUNCTION

With unit cost falling as the number of components per
circuit rises, by 1975 economics may dictate squeezing as
many as 65,000 components on a single silicon chip S

Day of reckoning

By Gordon E. Moore Clearly, we will be able to build such component-
Director, Research and Development Laboratories, Fairchild Semiconductor crammed equipment. Next, we ask un(.ier what c.ircumstances
division of Fairchild Camera and Instrument Corp. we should do it. The total cost of making a particular system

function must be minimized. To do so, we could amortize
the engineering over several identical items, or evolve flex-
ible techniques for the engineering of large functions so that

- ~ no disproportionate expense need be borne by a particular

Image credit: http:// array. Perhaps newly devised design automation procedures

Cva'Stanfs;z':r:;/:éisrfs’/csggs’/ could translate from logic diagram to technological realiza-
. crammingmorecomponents.pdf) tion without any special engineering.

CS181CA-PO: Computer Architecture 2 Fall 2025, Recontextualizing the Memory System

Outline

 Recap of the memory system
* Revisiting memory instructions as part of the “processor story”

 What’s next (in this course and in memory design)?

CS181CA-PO: Computer Architecture 3 Fall 2025, Recontextualizing the Memory System

Applications are Increasingly Memory Demanding

SPEC 2006 with perefetching = « == « = SPEC 2006 w/o prefetching SPEC17 with Prefetching = « = « — SPEC 2017 w/o Prefet{" Credit: Hassan. et al. “A)
: : :

Reusable Characterization of the

(a) cactusADM-cactuBSSN (b) gcc (c) Ibm (d) mcf (e) omnetpp| Memory System Behavior of
' — 20 —— 80— K — 30~ — SPEC2017 and SPEC2006”.
100 [\ 100} L ACM TACO 2021)
/ AN 60t - :
80t L & 80
60} . 40+ \ \-\ 1 60}
4) 20| | -y . SH— -
] .
e % 20¢ :
20} 10\\-——~\\\;:::: _ﬁ___;::::x_ 20t

O ; . . S . n O . . h
64k 2M 32M 1G 64k 2M 32M 1G 64k 2M 32M 1G 64k 2M 32M 1G 64k 2M 32M 1G

(f) xalancbmk (g) bwaves (h) bzip2 - xz 15 (i) h264 - x264 A (j) gobmk - leela

25 15—

20t "\ : \

Misses per 1000
Instructions

15}

10

5

| / //"I

0b—— 0 — L ol N3 0 ==
% 64k 2M 32M 1G 64k 2M 32M 1G 64k 2M 32M 1G 64k 2M 32M 1G 64k 2M 32M 1G

Cache Size

CS181CA-PO: Computer Architecture - 4 J Fall 2025, Recontextualizing the Memory System

Memory Advances Slower than Processors

@)

Credit: Computer Architecture:
A Quantitative Approach (p 80)

100,000
4)
10,000 -++---oeveeeessesssssssssssss s g _
) Advances In processor
é 1000 4------ccvoeeeeimnniii Processor .. deSignS are direCtIy related
E 100 e to the increased demand
10_ ... for memory!
Memory
1 =8== T T T ' ' I - g
1980 1985 1990 1995 2000 2005 2010 2015
Year

CS181CA-PO: Computer Architecture 5 Fall 2025, Recontextualizing the Memory System

é)

“Ports” are physical interfaces
that describe connections
between components

processor and cache

Accessing Memory via Ports

_ J
4 —>
Adder \
Register N > ALU Data
File
MUX —}/ . POrt
;é) ___/ LSQ
Instruction o
—>
PC Port S
O
)
A
MUX
N/

CS181CA-PQO: Computer Architecture 6 Fall 2025, Recontextualizing the Memory System

The “Lar

a0—
-:—a'1 ——=n]

ROW ADDR. DEMUX: SELECTS ROW

A
r

4
CAS —j

e

i
>
O
I

sos T DATA SELECTOR (4 TO 1 MUX)
D.O. (DATA OUT)
TRI STATE

| BUS

e b MUX
LO=D RAS HI =1

DL/ | r& =1 &1 &]sense
Y Y Y V| | o
z L .
S X e
pa \ RISING EDGE
OF CAS

IER

DRAM Diagram

&

J

Image credit: https://en.wikipedia.org/
wiki/Dynamic_random-access_memory

J

CS181CA-PO: Computer Architecture

e/Fast” Memory

Do we want our
memory system to
have a large capacity
or be fast to access?

We want large and
fast!

WL
—_— o
VDD
MZ M4
Ms | |°_ _°| _| Mg
TT TT
— — 0
Y
AT M, M; BL
=
(" — _)
SRAM Transistor
5 Diagram >
4)
Image credit: https://
en.wikipedia.org/wiki/
kStatic_random-access_memory)

Fall 2025, Recontextualizing the Memory System

Caches to Build Large/Fast Memory

Associativity: describes
size of cache sets In a

cache (e.g., this is an 8-way
set associative cache)

Tag: unique Valid bit: indicates if
iIdentifier for the data||block currently holds
In a cache block legitimate data

Set: the possible

blocks to which blocks that buffers/st
some data may be OCHS That DUITErS/StOres Cache Block: the minimum unit of

stored within the commonly reused items information that can be present/not present
cache in a cache (typically data is the size of a
“word” .. 64 bytes in modern processors)

Cache: the collection of cache

CS181CA-PQO: Computer Architecture 8 Fall 2025, Recontextualizing the Memory System

Principles of Locality to Mitigate Misses

* Applications tend to exhibit temporal and spatial locality when they are
deployed!

 Jemporal locality describes the likelihood of an application to reuse data
within similar periods of time

o Spatial locality describes the likelihood of an application to reuse data at
similar addresses to one another

CS181CA-PO: Computer Architecture 9 Fall 2025, Recontextualizing the Memory System

Cache Replacement Policies*

4 A) 4) 4) 4) () () é) 4) 4)
ccess
. A B A D D A C B
History
g J g J g J g J g J g J 4 J 4 J 4 W,
é)
(") é)
Least Recently Used B C
. J _ Y,
_ _J

CS181CA-PO: Computer Architecture 10 Fall 2025, Recontextualizing the Memory System

Chat with your neighbor(s)!

If we wanted to implement least-recently used
In the construction of the cache logic, what
additional state would need to be maintained?

Takeaway: if we want to implement a
replacement policy based on application
behavior, then we need to track metadata

(e.g., time of last access) in the cache to make
replacement decisions

CS181CA-PQO: Computer Architecture 11 Fall 2025, Recontextualizing the Memory System

Cache Prefetching

CPU

for (inti=0;i<mn;i++) {

arr[i] *=&;

)

arr[i]

arr[i+1]

arr[i+2]

arr[i+3]

arr[i+4]

Regular “stride
length”

CS181CA-PO: Computer Architecture

Also true of

Instructions!

12

Takeaway: caches can make
requests to lower levels of the

memory system on their own to
mitigate compulsory misses by
tracking recent access patterns

Fall 2025, Recontextualizing the Memory System

The Memory Hierarchy

N
10s of bytes, CPU
hundreds of
picoseconds

Register File

a) g ‘ h
10s of kilobytes, . | Private
ones of L1 Cache L1 Cache y
nanoseconds 7 ones of megabytes, T .
- 2 10s of nanoseconds _
9 y Private
L2 Cache L3 Cache — L2 Cache -
()
100s of kilobyt Shared \
T
5_1 OS n(; nc:s()ecscl)rfg,s - J 1s-10s of terabytes,
Shared ones of
_ Y,) agye
Shared milliseconds

_
Main Memory \ Storage
~)
1s-10s of gigabytes, |

hundreds of

nanoseconds
CS181CA-PQO: Computer Architecture ~ 3 J Fall 2025, Recontextualizing the Memory System

Data Consistency Issues in Shared Caches

Read acct balance

Read acct balance

CPU

Add acct balance Subtract acct balance CPU

@ Culprit: parallel updates to

Main Memory private copies of shared
data!

U J

CS181CA-PO: Computer Architecture 14 Fall 2025, Recontextualizing the Memory System

Side Channel Leakage in Caches

TABLE III: Example dictionary-assisted password guessing attack for
password ‘“hello”.

Input

Confidence Vector (Partial)

e h 1] 1 0 S y

h 0.0 0.39 | 0.0 023 | 0.0 0.0 0.0 0.03

e 0.21 0.0 0.0 0.0 0.0 0.0 0.0 0.03

| 0.0 0.0 0.05 | 0.0 037 | 0.0 0.07 | 0.0

1 0.0 0.0 0.05 | 0.0 037 | 0.0 0.07 | 0.06

0 0.0 0.0 0.0 0.0 0.0 0.15 | 0.0 0.0
Rank | Dictionary Words | Confidence Value
1 hello 0.3940.21 4+ 0.37 4+ 0.37 4+ 0.15 = 1.49
2 jelly 0.234+0.21 +0.374+0.374+0.0=1.18
3 hills 0.394+0.04+0.3740.374+0.0=1.13
4 holly 0.394+0.04+0.3740.374+0.0=1.13

(

_

Image credit: https://www.ndss-
symposium.org/ndss-paper/unveiling-
your-keystrokes-a-cache-based-side-
channel-attack-on-graphics-libraries/

~

_J

CS181CA-PQO: Computer Architecture

15

®-9® 1login &4 10 logins ¥¥ Random

10" 10* 10° 10° 10°
Number of guesses

Fall 2025, Recontextualizing the Memory System

Summary

e “Instruction-" and “data-memory” are not physical components that fit on the
processor, instead they refer to a memory system of components designed to
give the illusion of an individual device

 We can leverage common principles of application behavior to, with high
probability, and mitigate cache misses by predicting which memory
addresses will be accessed next

* “Optimizing the common case” can leads towards pitfalls with respect to the
consistency of data throughout the cache hierarchy and leakage via side

channels

CS181CA-PO: Computer Architecture 16 Fall 2025, Recontextualizing the Memory System

CS181CA-PO: Computer Architecture 17 Fall 2025, Recontextualizing the Memory System

What’s Next...

Data : Control
Computations .
Logic

Transfers

CS181CA-PQO: Computer Architecture 18 Fall 2025, Recontextualizing the Memory System

