No colloquium today

Recontextualizing the Memory
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Cramming more components
onto integrated circuits

LOG2z OF THE
NUMBER OF COMPONENTS
PER INTEGRATED FUNCTION

With unit cost falling as the number of components per
circuit rises, by 1975 economics may dictate squeezing as
many as 65,000 components on a single silicon chip S

Day of reckoning

By Gordon E. Moore Clearly, we will be able to build such component-
Director, Research and Development Laboratories, Fairchild Semiconductor crammed equipment. Next, we ask un(.ier what c.ircumstances
division of Fairchild Camera and Instrument Corp. we should do it. The total cost of making a particular system

function must be minimized. To do so, we could amortize
the engineering over several identical items, or evolve flex-
ible techniques for the engineering of large functions so that

- ~ no disproportionate expense need be borne by a particular

Image credit: http:// array. Perhaps newly devised design automation procedures

Cva'Stanfs;z':r:;/:éisrfs’/csggs’/ could translate from logic diagram to technological realiza-
. crammingmorecomponents.pdf ) tion without any special engineering.
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Outline

 Recap of the memory system
* Revisiting memory instructions as part of the “processor story”

 What’s next (in this course and in memory design)?
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Applications are Increasingly Memory Demanding

SPEC 2006 with perefetching = « == « = SPEC 2006 w/o prefetching SPEC17 with Prefetching = « = « — SPEC 2017 w/o Prefet{" Credit: Hassan. et al. “A )
: : :
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Memory Advances Slower than Processors

@ )

Credit: Computer Architecture:
A Quantitative Approach (p 80)
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é )

“Ports” are physical interfaces
that describe connections
between components

processor and cache

Accessing Memory via Ports
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The “Lar
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Image credit: https://en.wikipedia.org/
wiki/Dynamic_random-access_memory
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e/Fast” Memory

Do we want our
memory system to
have a large capacity
or be fast to access?

We want large and
fast!
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Caches to Build Large/Fast Memory

Associativity: describes
size of cache sets In a

cache (e.g., this is an 8-way
set associative cache)

Tag: unique Valid bit: indicates if
iIdentifier for the data||block currently holds
In a cache block legitimate data

Set: the possible

blocks to which blocks that buffers/st
some data may be OCHS That DUITErS/StOres Cache Block: the minimum unit of

stored within the commonly reused items information that can be present/not present
cache in a cache (typically data is the size of a
“word” .. 64 bytes in modern processors)

Cache: the collection of cache
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Principles of Locality to Mitigate Misses

* Applications tend to exhibit temporal and spatial locality when they are
deployed!

 Jemporal locality describes the likelihood of an application to reuse data
within similar periods of time

o Spatial locality describes the likelihood of an application to reuse data at
similar addresses to one another
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Cache Replacement Policies*
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Chat with your neighbor(s)!

If we wanted to implement least-recently used
In the construction of the cache logic, what
additional state would need to be maintained?

Takeaway: if we want to implement a
replacement policy based on application
behavior, then we need to track metadata

(e.g., time of last access) in the cache to make
replacement decisions
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Cache Prefetching

CPU

for (inti=0;i<mn;i++) {

arr[i] *=&;

)

arr[i]

arr[i+1]

arr[i+2]

arr[i+3]

arr[i+4]

Regular “stride
length”
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Also true of

Instructions!

12

Takeaway: caches can make
requests to lower levels of the

memory system on their own to
mitigate compulsory misses by
tracking recent access patterns
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The Memory Hierarchy
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Data Consistency Issues in Shared Caches

Read acct balance

Read acct balance

CPU

Add acct balance Subtract acct balance CPU

@ Culprit: parallel updates to

Main Memory private copies of shared
data!

U J
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Side Channel Leakage in Caches

TABLE III: Example dictionary-assisted password guessing attack for
password ‘“hello”.

Input

Confidence Vector (Partial)

e h 1 ] 1 0 S y

h 0.0 0.39 | 0.0 023 | 0.0 0.0 0.0 0.03

e 0.21 0.0 0.0 0.0 0.0 0.0 0.0 0.03

| 0.0 0.0 0.05 | 0.0 037 | 0.0 0.07 | 0.0

1 0.0 0.0 0.05 | 0.0 037 | 0.0 0.07 | 0.06

0 0.0 0.0 0.0 0.0 0.0 0.15 | 0.0 0.0
Rank | Dictionary Words | Confidence Value
1 hello 0.3940.21 4+ 0.37 4+ 0.37 4+ 0.15 = 1.49
2 jelly 0.234+0.21 +0.374+0.374+0.0=1.18
3 hills 0.394+0.04+0.3740.374+0.0=1.13
4 holly 0.394+0.04+0.3740.374+0.0=1.13

(

\_

Image credit: https://www.ndss-
symposium.org/ndss-paper/unveiling-
your-keystrokes-a-cache-based-side-
channel-attack-on-graphics-libraries/
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Summary

e “Instruction-" and “data-memory” are not physical components that fit on the
processor, instead they refer to a memory system of components designed to
give the illusion of an individual device

 We can leverage common principles of application behavior to, with high
probability, and mitigate cache misses by predicting which memory
addresses will be accessed next

* “Optimizing the common case” can leads towards pitfalls with respect to the
consistency of data throughout the cache hierarchy and leakage via side

channels
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What’s Next...

Data : Control
Computations .
Logic

Transfers
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