Security Vulnerabilities of
Caches

Unveiling your keystrokes: A Cache-based
Side-channel Attack on Graphics Libraries

Daimeng Wang™®, Ajaya Neupane®, Zhiyun Qian*, Nael Abu-Ghazaleh™, Srikanth V. Krishnamurthy*
Edward J. M. Colbert', and Paul Yu?
*University of California Riverside. {dwang030, ajaya, zhiyunq, nael, krish} @cs.ucr.edu
TVirginia Tech. ecolbert@vt.edu
tus. Army Research Lab (ARL). paul.l.yu.civ@mail.mil

Abstract—Operating systems use shared memory to improve
performance. However, as shown in recent studies, attackers can
exploit CPU cache side-channels associated with shared memory
to extract sensitive information. The attacks that were previously
attempted typically only detect the presence of a certain operation

nn'l “I\“II:”I\ ﬂ:m:nnnn‘- mn-\--nl n“nl‘fﬂ:ﬂ ‘I\ :r‘nn‘»:f-: n'\ll n-rnl--n"n

1.e., different virtual pages are mapped to the same physical
pages. This creates an opportunity for a malicious process to
infer graphics-related activities of a victim process.

Our intuition of the attack is that the performance of

.
f"i“')f\"\If‘(‘ ranr‘nﬂnn 10 I""‘lfif“)] ‘Ff\f 1MI0Aar avnarianrao arNnrrnoco s]

(

-

Image credit: https://www.ndss-
symposium.org/ndss-paper/unveiling-
your-keystrokes-a-cache-based-side-
channel-attack-on-graphics-libraries/

~

_J

CS181CA-PQO: Computer Architecture

Fall 2025, Introducing Cache Attacks

Outline

* On studying attacks and security
* The premise of the attack

* |Introducing the exploitable memory system...

CS181CA-PO: Computer Architecture 3 Fall 2025, Introducing Cache Attacks

Disclaimer on Teaching Attacks...

 We are going to describe published, well-studied literature about dangerous
and powerful attacks

* These attacks are intuitive and easy to perform (they do not require high levels
of privilege or complicated code to execute)

* One of the learning goals of this class is to study the trade-offs of design
decisions made

« [od security is an often neglected component of this design space trade-off,

so we Wwill use it as a means to think deeply about the concepts that we
have covered and learned thus far

CS181CA-PO: Computer Architecture 4 Fall 2025, Introducing Cache Attacks

Chat with your neighbor(s)!

Share your comfort levels of describing and learning about attacks.
W How security conscious do you feel you are?

Do you feel like studying and publishing attacks should be

encouraged (e.g., more awareness towards building defenses) or
discouraged (e.g., don’t notify attackers of unknown vulnerabilities)?

CS181CA-PO: Computer Architecture 5 Fall 2025, Introducing Cache Attacks

The Security Stack

* |n order to understand how to build secure systems,
we should think about ways in which they are
vulnerable Humans

o Different levels of threat imply different degrees of

defenses Software

* |n general, defenses at one level of abstraction do Hardware
not apply to the next level of vulnerability

* Different degrees of threat may apply to different System Heterogeneity
computing contexts

CS181CA-PO: Computer Architecture 6 Fall 2025, Introducing Cache Attacks

Defining Side Channels

* A side channel describes incidental information leakage
that can be inferred from observing normal execution

e How does hardware leak information?

 Noise! 4 }
» Heat (and power dissipation)! «©
e Timing!

* Adversaries need to have some notion of meaning
associated with the information that is leaked by the

behavior

CS181CA-PQO: Computer Architecture 7

for (;;) {

)

// super intense computation!

Fall 2025, Introducing Cache Attacks

The Premise of the Attack

e |f an adversary can learn your keystrokes,
then they can know anything that you type
(e.g., passwords, unsubmitted searches, etc)!

 When pressing keys on a virtual keyboard M

(.e., on a touchscreen), typically the pressed P FE| €] &
key Is highlighted

nZXCVBNM®

return

* Jo perform the “highlight” operation, the
keyboard includes and executes code from a
graphics library that will update the display ® U

CS181CA-PO: Computer Architecture 8 Fall 2025, Introducing Cache Attacks

ldentifying Vulnerable Code

Source from libcairo.so which is
used in Ubuntu Linux at the
beginning and end of calling

“renderStart” and “renderEnd”!

U _J
static void D32 LCD32 Opaque(...) A static void blit_lcd32_opaque_row(dst, src, color, width) {
10 A for (1nt 1 = 0; 1 < width; 1++) {

AT (& == srcilil)) 4
continue;

blit lcd32 opaque row(dstRow, srcRow, color, width);
dSsTROW (SkPMColor*)((char*)dstRow + dstRB);

.
SrcRow (const SkPMColor*)((const char*)srcRow + maskRB)
while (--helght = ©)
}
(\ (u [] u \
4 N Asymmetric timing
Image credit: https://www.ndss- Memory access by

symposium.org/ndss-paper/unveiling- . : depending on the
. calling srcl[i]
your-keystrokes-a-cache-based-side- state of the datal

channel-attack-on-graphics-libraries/ u J y J
_),

CS181CA-PO: Computer Architecture 9 Fall 2025, Introducing Cache Attacks

500000

450000 f

—~ 400000 ¢

Time (ns

300000

250000

200000

(

-

~
Image credit: https://www.ndss-

symposium.org/ndss-paper/unveiling-
your-keystrokes-a-cache-based-side-
channel-attack-on-graphics-libraries/

_J/

CS181CA-PQO: Computer Architecture

ldentifying Vulnerable Code

350000 |

Measured Execution Tim
1 | | | 1 | 1 1 1 | 1 1 1 | 1
T

-

T | 'I' =

0 0800 4aa°gul0g |

o

Different characters to render means that
there are different amounts of whitespace,
so the timing to render different characters

will be distinct

10

Fall 2025, Introducing Cache Attacks

Profiling the Attacker (Threat Model)

* (Goal: extract sensitive information that might otherwise be protected via encryption or
other cryptographic encoding while stored or in transmission

» Capability: access to the libraries and hardware versions of the victim

. libraries are often open source, so it is easy to know what will be run

o (L this allows the adversary to do behavioral profiling offline before deploying the
attack

o Capability: be able to run legitimate guest code alongside the victim’s process

. this can be in the website’s code itself, a third-party cookie, an external
application, etc...

CS181CA-PO: Computer Architecture 11 Fall 2025, Introducing Cache Attacks

Shared Memory Model

W Click key
4 Start rendering
& End rendering

M : Measure timing of

rendering (e.g., end -
start) Adversary

L1 Cache

L2 Cache

renderStart(); renderEnd();

Main Memory

@)
@0
@
&
or—
ay]
O
=
—

CS181CA-PO: Computer Architecture 12 Fall 2025, Introducing Cache Attacks

Chat with your neighbor(s)!

What are some of the challenges for an
adversary who wants to measure when a
user calls renderStart and renderEnd?

CS181CA-PO: Computer Architecture 13 Fall 2025, Introducing Cache Attacks

Flush + Reload Attack

N
(o o)

N=F -

// flush the line
clflush OXRENDERSTART,

// wait some time
t1l = time.now();
while (time.now() -t1 < 100ns) {};

// access line
t& = time.now()

X = *(OXxXRENDERSTART);

// if slow access, unused
// else, used!

CS181CA-PO: Computer Architecture 14 Fall 2025, Introducing Cache Attacks

Flush + Reload Attack

* o Implement such an attack, an adversary needs to be able to use very
precise timers (nanosecond granularity) and be able to execute completely in
parallel with the victim

e X806 gives access to the clflush instruction to be able to explicitly interact with
long term storage and write certain data through to non-volatile storage

* Potential mitigation: What happens if the ISA and/or hardware doesn’t allow
for explicit flushing instructions or this granularity of timing??

CS181CA-PO: Computer Architecture 15 Fall 2025, Introducing Cache Attacks

Prime + Probe Attack

» Unfortunately, we are not safe with these ISA defenses!

 While, we may not be able to time individual accesses, but we can measure
the impact of misses due to cache contention

X /Q 0\ I
.

N

‘shared cache \
CS181CA-PO: Computer Archite ' . —16 2025, Introducing Cache Attacks

