Understanding and Improving
Cache Misses

Design of CPU Cache Memories'

From CPU
~ Alan Jay Smith ee————- SRR SR, -
["'"‘" Address In Address npul """'"] Computer Science Division, EECS Department i Vetusd] Rest ! Conitol |
<3:2> _ 1 : University of California p-»| Address Tag i Address | !
Compare with Quasdword | mMatch Berkeley, California 94720, USA | } onssr-e) miest-iz !
Address Registar H L e et
' { t na maich i i i f X
| seiect st ¥ Setect Set LY} 3¢ { ,
n TLE <i7:12> ln Cccho <10 4>J }) <ir:12> ry 3 3 Y Tranet
| —— M e . slator
r Read ou! 2]~_® Address . °
[nnd o <{1> Aead outl 2 l O\ud;ocdcr e IPUl e 0 : |

Address Tags <3 1il>

Reglister
2 Enitries b 1 y<3ris> Mqub <3t12>
\ <3| 1> s.coct woed from <3).2> <3ti8> <3tiz>
‘ h Quadword Compare MUX
Comp-u 1} match Each Qu
Compsere with Virtusl Ceche <3It12> Bus
Address <3Fid> @__J ‘ Addresses i Update Yo QU”#—'.‘ inpul <n> [-* <3ILH> nput
l aich Lno maich Select Word }—~—o{ Replscoment Reglater | MUK Compare - Regteter
Bletus
Select Line for @'—-' 1 — } 1! — i Te Maln
Setect "'"CM“BI Roplocomml 1 <3t4> _ [Bus
Ao match Load Cache r Cache —/\ Compare -y MUX
Resl Address ®- - Yo CPU Bue
. | Output Regisler —®1 Owvtput | !
<}jniz> peed Ouiput
{x Copy ﬂach Reglster
c3k4> Ouadword Register
b 1 K Dirly Sk, VN
" Address Butler Quadword
Send Virtuel Updete { L] Prefetc ; Bulter
Add ‘o Replscament Enabled
I:l:\:::hn .';inchu Send Resl Addises *,“ <3:2>) 1 4
10 Mein uomoty) | -
1 Resd oul Tegs 127
Use Page Directory and of Next Sel
Page Get Ouod-ocd } .
_§ Page Table 10 Transisle I -.@ (don’t cross <10:4> -
Yikiuval Addiess Faut I Hrom Maln ”'m" pege doundary) ' - ! ¢ Ceche !
1o Rest Address Vrap _] :
L f { | Losd Clcho end i
Yo CPV Quadword Buller ' 0
Load un] (b < , @) —+{ Compsre] } F'p {1

™1 Addiesaes

'--—-qp-u-

Conltol H Ouadword Ree!
Pretetch Line lrom H . g Addrese Tag
Maln Memory and i | <stu>
to.d C.Ch' L--wﬂﬂvﬂ-----~----“‘--‘

(")

Image credit: https://www2.eecs.berkeley.edu/
Pubs/TechRpts/1987/CSD-87-357.pdf
CS181CA-PQO: Computer Architecture " 2 J

Fall 2025, Mitigating Cache Misses

Outline

* Understanding cache misses
e Strategies to mitigate misses!

* Introducing the coherence problem...

CS181CA-PO: Computer Architecture 3 Fall 2025, Mitigating Cache Misses

Understanding Cache Misses

 Compulsory misses occur on the first access to a block, so the data cannot yet be in the
cache [&d these misses are unavoidable!

» Capacity misses occur if the cache cannot contain all of the blocked needed during the
execution

* Conflict misses are a subset of capacity misses in which a set within the cache cannot contain
all of the blocks needed during the execution that can be mapped to that set

 The mapping of addresses to cache set is statically defined (i.e., fixed at manufacturing), so
cache placement is inflexible kd choosing which blocks to replace an incoming block with is

dictated by behaviors at runtime!

 Expected memory operation latency: L1 hit time + L1 miss rate * (L2 hit time + L2 miss rate *
(L3 hit time + L3 miss rate * memory latency))

CS181CA-PQO: Computer Architecture 4 Fall 2025, Mitigating Cache Misses

Principles of Locality

* Applications tend to exhibit temporal and spatial locality when they are
deployed!

 Jemporal locality describes the likelihood of an application to reuse data
within similar periods of time

o Spatial locality describes the likelihood of an application to reuse data at
similar addresses to one another

CS181CA-PO: Computer Architecture 5 Fall 2025, Mitigating Cache Misses

Cache Replacement Policies

* Find an eviction target from the candidates within a set
* |f an invalid block exists within the set, greedily fill that block

* |f no valid block exists, choose a target to evict that makes sense relative to
the application behavior

/\ /_\

A B A D D A C B

\ J - J J - J - J - J - / - Y,

* Belady’s algorithm (optimal): choose to cache based o own history based on reuse
distance

* |n practice, least recently used is a heuristic that works well ed you will explore alternatives in
HW?2 (written)!

CS181CA-PO: Computer Architecture 6 Fall 2025, Mitigating Cache Misses

Chat with your neighbor(s)!

What mechanisms of our cache
construction reap the benefits of application
temporal locality? Spatial locality?

CS181CA-PO: Computer Architecture 7 Fall 2025, Mitigating Cache Misses

Handing Cache Misses

for (inti=0;i<n;i++) {

arr[i] *=&;
CPU \ After the L3 cache responds arr[O]

arr[0] to the L2 cache following the

compulsory miss, it is sitting idle...
what else can it do?
arr[0]? i ’
arr[0]?

v
arr[0O]
L2 Cache L2 Cache

(")

arry

Main Memory Storage

CS181CA-PO: Computer Architecture 8 Fall 2025, Mitigating Cache Misses

Cache Prefetching

* Given that applications tend to exhibit spatial locality beyond the granularity
of a cache block, caches can try to predict what the next blocks to use are to
avolid misses on requests!

* The notion of fetching some data before it is explicitly requested by the
processor Is referred to as cache prefetching

* Prefetching can either be compiler directed (software prefetching) and/or
implemented in the cache logic (hardware prefetching)

o Software prefetching injects more instructions into the software to execute
but can help avoid cache misses, so it is likely to benefit performance overall!

CS181CA-PO: Computer Architecture 9 Fall 2025, Mitigating Cache Misses

Prefetching Strategies

* There are two fields that we likely want to
prefetch: the instructions and the data

e Note that the instructions and data are
characterized by their field size &d each data for (inb 1= 0: 1< 1t 1049 |

access happens on a stride length of the size cPU arr[i] *= ;
of an integer (two bytes) whereas instruction }
stride lengths will depend on the ISA

 When prefetching to the caches, the caches
make note of patterns of regular stride
lengths to inform what to prefetch next

CS181CA-PO: Computer Architecture 10 Fall 2025, Mitigating Cache Misses

Chat with your neighbor(s)!

Suppose | have a data storage application where the central
storage structure Is based on a linked-list. ldeally, what would
a cache prefetcher be retrieving from memory in advance of a

compulsory miss? Are there any potential pitfalls?

CS181CA-PQO: Computer Architecture 11 Fall 2025, Mitigating Cache Misses

Using Shared Caches

CPU

CS181CA-PO: Computer Architecture

Read libc var

~

Read big array

Read libc var

~

Where iIs the lowest latency

~

place that we can read var
from?

@ big array

—

big array

Main Memory

12

CPU

100s of ns

big arr

Storage

Fall 2025, Mitigating Cache Misses

Snooping to Accelerate Lookups

 Caches are connected to one another using collections of wires between ports (i.e.,

buses
) L2 Cache L2 Cache

I Bus to L3

L3 Cache

 Buses between caches can support different kinds of memory commands: caches
can query the lower-level memory component directly via a request or to other peers
on the processor-side of the bus via a broadcast

 Broadcasts can be used to implement optimistic snooping requests in which a cache
asks a peer if they have a shared data value to avoid the longer latency lookup of the
lower levels

CS181CA-PO: Computer Architecture 13 Fall 2025, Mitigating Cache Misses

Chat with your neighbor(s)!

Suppose processors A and B share a L3 cache. Processor A

reads data X at time t0. Processor B reads data X at time t1.

Processor A writes data X = X+17 at time t2, and processor B
reads data X again at time t3. What is the data read by B at t37?

Exit ticket!

https://forms.cloud.microsoft/r/z4yfLHSng2

CS181CA-PQO: Computer Architecture 14 Fall 2025, Mitigating Cache Misses

