
CS181CA-PO: Computer Architecture Fall 2025, Mitigating Cache Misses

Understanding and Improving
Cache Misses

1

CS181CA-PO: Computer Architecture Fall 2025, Mitigating Cache Misses

Image credit: https://www2.eecs.berkeley.edu/
Pubs/TechRpts/1987/CSD-87-357.pdf

2

CS181CA-PO: Computer Architecture Fall 2025, Mitigating Cache Misses

Outline

• Understanding cache misses

• Strategies to mitigate misses!

• Introducing the coherence problem…

3

CS181CA-PO: Computer Architecture Fall 2025, Mitigating Cache Misses

Understanding Cache Misses

• Compulsory misses occur on the first access to a block, so the data cannot yet be in the
cache ➡ these misses are unavoidable!

• Capacity misses occur if the cache cannot contain all of the blocked needed during the
execution

• Conflict misses are a subset of capacity misses in which a set within the cache cannot contain
all of the blocks needed during the execution that can be mapped to that set

• The mapping of addresses to cache set is statically defined (i.e., fixed at manufacturing), so
cache placement is inflexible ➡ choosing which blocks to replace an incoming block with is
dictated by behaviors at runtime!

• Expected memory operation latency: L1 hit time + L1 miss rate * (L2 hit time + L2 miss rate *
(L3 hit time + L3 miss rate * memory latency))

4

CS181CA-PO: Computer Architecture Fall 2025, Mitigating Cache Misses

Principles of Locality

• Applications tend to exhibit temporal and spatial locality when they are
deployed!

• Temporal locality describes the likelihood of an application to reuse data
within similar periods of time

• Spatial locality describes the likelihood of an application to reuse data at
similar addresses to one another

5

CS181CA-PO: Computer Architecture Fall 2025, Mitigating Cache Misses

Cache Replacement Policies

• Find an eviction target from the candidates within a set

• If an invalid block exists within the set, greedily fill that block

• If no valid block exists, choose a target to evict that makes sense relative to
the application behavior

6

A

• Belady’s algorithm (optimal): choose values to cache based on known history based on reuse
distance

• In practice, least recently used is a heuristic that works well ➡ you will explore alternatives in
HW2 (written)!

B A D D A C B

CS181CA-PO: Computer Architecture Fall 2025, Mitigating Cache Misses

What mechanisms of our cache
construction reap the benefits of application

temporal locality? Spatial locality?

Chat with your neighbor(s)!

7

CS181CA-PO: Computer Architecture Fall 2025, Mitigating Cache Misses

Handing Cache Misses

Storage

CPU

L1 Cache

L2 Cache L3 Cache

CPU

L1 Cache

L2 Cache

Main Memory

for (int i = 0; i < n; i++) {
 arr[i] *= 2;
}

arr

arr[0]arr[0]

arr[0]

arr[0]
Do you have

arr[0]?

Do you have
arr[0]?

Do you have
arr[0]?

After the L3 cache responds arr[0]
to the L2 cache following the

compulsory miss, it is sitting idle…
what else can it do?

8

CS181CA-PO: Computer Architecture Fall 2025, Mitigating Cache Misses

Cache Prefetching

• Given that applications tend to exhibit spatial locality beyond the granularity
of a cache block, caches can try to predict what the next blocks to use are to
avoid misses on requests!

• The notion of fetching some data before it is explicitly requested by the
processor is referred to as cache prefetching

• Prefetching can either be compiler directed (software prefetching) and/or
implemented in the cache logic (hardware prefetching)

• Software prefetching injects more instructions into the software to execute
but can help avoid cache misses, so it is likely to benefit performance overall!

9

CS181CA-PO: Computer Architecture Fall 2025, Mitigating Cache Misses

Prefetching Strategies

• There are two fields that we likely want to
prefetch: the instructions and the data

• Note that the instructions and data are
characterized by their field size ➡ each data
access happens on a stride length of the size
of an integer (two bytes) whereas instruction
stride lengths will depend on the ISA

• When prefetching to the caches, the caches
make note of patterns of regular stride
lengths to inform what to prefetch next

CPU
for (int i = 0; i < n; i++) {
 arr[i] *= 2;
}

10

CS181CA-PO: Computer Architecture Fall 2025, Mitigating Cache Misses

Suppose I have a data storage application where the central
storage structure is based on a linked-list. Ideally, what would
a cache prefetcher be retrieving from memory in advance of a

compulsory miss? Are there any potential pitfalls?

Chat with your neighbor(s)!

11

CS181CA-PO: Computer Architecture Fall 2025, Mitigating Cache Misses

Using Shared Caches

Storage

CPU

L1 Cache

L2 Cache L3 Cache

CPU

L1 Cache

L2 Cache

Main Memory

Read libc var

var

varvar

var

Read big array

Read libc var

big array

big array big arr

arr

Where is the lowest latency
place that we can read var

from?10s of ns
100s of ns

12

CS181CA-PO: Computer Architecture Fall 2025, Mitigating Cache Misses

Snooping to Accelerate Lookups

• Caches are connected to one another using collections of wires between ports (i.e.,
buses)

• Buses between caches can support different kinds of memory commands: caches
can query the lower-level memory component directly via a request or to other peers
on the processor-side of the bus via a broadcast

• Broadcasts can be used to implement optimistic snooping requests in which a cache
asks a peer if they have a shared data value to avoid the longer latency lookup of the
lower levels

L3 Cache

L2 CacheL2 Cache

Bus to L3

13

CS181CA-PO: Computer Architecture Fall 2025, Mitigating Cache Misses

Chat with your neighbor(s)!

Suppose processors A and B share a L3 cache. Processor A
reads data X at time t0. Processor B reads data X at time t1.
Processor A writes data X = X+1 at time t2, and processor B

reads data X again at time t3. What is the data read by B at t3?

https://forms.cloud.microsoft/r/z4yfLHSng2

Exit ticket!

14

