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Outline

* Understanding cache misses
e Strategies to mitigate misses!

* Introducing the coherence problem...
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Understanding Cache Misses

 Compulsory misses occur on the first access to a block, so the data cannot yet be in the
cache [&d these misses are unavoidable!

» Capacity misses occur if the cache cannot contain all of the blocked needed during the
execution

* Conflict misses are a subset of capacity misses in which a set within the cache cannot contain
all of the blocks needed during the execution that can be mapped to that set

 The mapping of addresses to cache set is statically defined (i.e., fixed at manufacturing), so
cache placement is inflexible kd choosing which blocks to replace an incoming block with is

dictated by behaviors at runtime!

 Expected memory operation latency: L1 hit time + L1 miss rate * (L2 hit time + L2 miss rate *
(L3 hit time + L3 miss rate * memory latency))
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Principles of Locality

* Applications tend to exhibit temporal and spatial locality when they are
deployed!

 Jemporal locality describes the likelihood of an application to reuse data
within similar periods of time

o Spatial locality describes the likelihood of an application to reuse data at
similar addresses to one another
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Cache Replacement Policies

* Find an eviction target from the candidates within a set
* |f an invalid block exists within the set, greedily fill that block

* |f no valid block exists, choose a target to evict that makes sense relative to
the application behavior

/\ /_\
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* Belady’s algorithm (optimal): choose to cache based o own history based on reuse
distance

* |n practice, least recently used is a heuristic that works well ed you will explore alternatives in
HW?2 (written)!
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Chat with your neighbor(s)!

What mechanisms of our cache
construction reap the benefits of application
temporal locality? Spatial locality?
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Handing Cache Misses

for (inti=0;i<n;i++) {

arr[i] *=&;
CPU \ After the L3 cache responds arr[O]

arr[0] to the L2 cache following the

compulsory miss, it is sitting idle...
what else can it do?
arr[0]? i ’
arr[0]?

v
arr[0O]
L2 Cache L2 Cache

(" )

arry

Main Memory Storage
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Cache Prefetching

* Given that applications tend to exhibit spatial locality beyond the granularity
of a cache block, caches can try to predict what the next blocks to use are to
avolid misses on requests!

* The notion of fetching some data before it is explicitly requested by the
processor Is referred to as cache prefetching

* Prefetching can either be compiler directed (software prefetching) and/or
implemented in the cache logic (hardware prefetching)

o Software prefetching injects more instructions into the software to execute
but can help avoid cache misses, so it is likely to benefit performance overall!
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Prefetching Strategies

* There are two fields that we likely want to
prefetch: the instructions and the data

e Note that the instructions and data are
characterized by their field size &d each data for (inb 1= 0: 1< 1t 1049 |

access happens on a stride length of the size cPU arr[i] *= ;
of an integer (two bytes) whereas instruction }
stride lengths will depend on the ISA

 When prefetching to the caches, the caches
make note of patterns of regular stride
lengths to inform what to prefetch next
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Chat with your neighbor(s)!

Suppose | have a data storage application where the central
storage structure Is based on a linked-list. ldeally, what would
a cache prefetcher be retrieving from memory in advance of a

compulsory miss? Are there any potential pitfalls?
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Using Shared Caches

CPU
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Read libc var

~

Read big array

Read libc var

~

Where iIs the lowest latency

~

place that we can read var
from?

@ big array

—

big array

Main Memory

12

CPU

100s of ns

big arr

Storage
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Snooping to Accelerate Lookups

 Caches are connected to one another using collections of wires between ports (i.e.,

buses
) L2 Cache L2 Cache

I Bus to L3

L3 Cache

 Buses between caches can support different kinds of memory commands: caches
can query the lower-level memory component directly via a request or to other peers
on the processor-side of the bus via a broadcast

 Broadcasts can be used to implement optimistic snooping requests in which a cache
asks a peer if they have a shared data value to avoid the longer latency lookup of the
lower levels
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Chat with your neighbor(s)!

Suppose processors A and B share a L3 cache. Processor A

reads data X at time t0. Processor B reads data X at time t1.

Processor A writes data X = X+17 at time t2, and processor B
reads data X again at time t3. What is the data read by B at t37?

Exit ticket!

https://forms.cloud.microsoft/r/z4yfLHSng2
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