Lab 9 Approximating Ahmdahl’s Law

As we have described in class, writing multithreaded workloads can improve application
performance by utilizing thread-level parallelism. As you saw in CS105 and as we have reiterated
in class, the benefit of using multiple threads can be significant but it is unlikely that we can
fully realize ideal speedups in practice. This is because of Ahmdahl’s Law, which is fomalized
below:

§=— 1)
(1— %p) + 22
Where S defines the overall speedup, %p describes the percentage of the application that is
parallelizable, and [is the maximum ideal speedup.
It may be difficult to deduce what the percentage of an application is parallel! Unlike O or
O, there is no good mechanism to define exactly how much of a program is inherently parallel or
sequential relative to the overall execution. As such, we will empirically attempt to deduce the
value p for various applications and, in the process, implement different strategies for writing a
concurrent data structure.

Getting Started Start this lab by obtaining the source from the course website:

wget https://cs.pomona.edu/classes/cs181lca/labs/1labl0.zip
> unzip labl10.zip

In this directory, you will see that there are source files to implement a data structure called
a skip list. Skip lists are often used in the literature due to their natural parallelizability while
still promising O(logn) search, insertion, and removal operation. We will spend the next section
overviewing skip lists before we dive into making them concurrent!

1 Skip Lists

A skip list is a probabilistic, sorted data structure in which data is stored in nodes in a collection
of hierarchical linked lists. With a 50% probability, a node may be promoted to the next level of
the skip list. As a result, each level up in the skip list has half as many nodes as the level below.

By arranging nodes in this way, searching for a node in a skip list works by starting from the
minimum node and scanning along the uppermost linked list for the key. If the node is found,
the search is done! Otherwise, track the node with the closest key less than the searched key
and begin the search from this node at the level below.

To exemplify this procedure, an example skip list is shown in Fig.

030
(D@

Figure 1: A skip list data structure.

1 of CS181CA Fall 2025

Lab 9 Approximating Ahmdahl’s Law

Suppose we wanted to search for the element 61 in this skip list. To do so, we would
start at the minimum element in the upper-most list and traverse from left to right looking
for the element. In this case, this would mean that traversing the upper-most list would go from
0 — 11 — 100. As soon as we reach a node greater than the key we are searching for (100) we
are done searching at this level, so we go down to the next level and start the search from the
node right before the biggest value at the level above. In this case, this means at the next level
down, we begin our search from 11. At the next level down we would search 11 — 78 and, again
stop our search as we have reached a node greater than the key we are searching for. From here,
we would continue our search from 11 at the next level down. Our search would go 11 — 61,
and we have found our element! If we get to the lowest level of the skip list and do not find the
element, then our search has failed.

Skip lists promise O(logn) due to the fact that there will be logn levels of the skip list data
structure and because the expected number of nodes to traverse at a particular level is constant.
For further reading, you can look at the formal analysis of the skip list complexity classes here!

If we want to insert a node into the skip list, we need to start by finding the right place to
link it into the data structure. To do so, we start by searching for the key that we would like to
insert but maintain a list of predecessors and successors at every level of list. That way, when we
determine how many levels we want to insert the node to, we can perform a linked list insertion
at each of these levels. Similarly, if we want to remove an element from the skip list, we do so
by unlinking the node from each list it belongs to.

Each of these procedures are provided to you in the src/sequential/skip_list.hh file.

2 Parallelization Strategies
In this lab, we will be implementing two different locking strategies to analyze the parallelizability

of different approaches: coarse-grained locking and fine-grained locking. We will implement these
strategies together in lab!

3 Analyzing Outputs
To understand the differences in performance, we should compare the speedup/slow down of an

approach relative to the single threaded case! From this, we can come up with a speedup factor
relative to the single threaded version of that run.

2 of CS181CA Fall 2025

https://en.wikipedia.org/wiki/Skip_list

	Skip Lists
	Parallelization Strategies
	Analyzing Outputs

