
Lab 9 Branch Prediction Lab

As we have discussed in class, Speculative Execution Attacks (Spectre) are dependent on
several key processor features in order to be exploited. One of these features is that the processor
needs to have a dynamic branch predictor so that the adversary can mistrain the predictor and
induce a long, speculative window.

In this lab, you are asked to play the role of a chip developer who wishes to target branch
prediction as a means to defend against Spectre attacks. In particular, you work from the key
insight – if the branch predictor predicts a random target, then there is no way for an adversary
to control the branch predictor’s behavior. Before fabricating the idea, which will take weeks or
months of effort, you decide that you want to simulate the approach first to be able to determine
whether or not such an approach will tank performance.

Your task in this lab will be to evaluate the performance of different branch prediction strate-
gies by running various simulations and comparing the branch prediction outputs. Afterwards,
you will be asked to implement a branch predictor that outputs a random value for each predic-
tion and measure the performance overhead of such a scheme relative to the overhead of using
a naïve approach compared to the state-of-the-art. This will allow you to say that, for these
workloads, a random branch predictor is x% worse than the state-of-the-art and that such a
result may or may not be tolerable give that a naïve dynamic branch predictor is y% worse than
the state-of-the-art.

Purpose of This Lab. This lab will reinforce the following concepts:

1. Running gem5 simulations with various configurations

2. Analyzing various gem5 outputs to draw conclusions about program behavior

3. Modifying the simulator back-end to implement desired behaviors

Getting Started
In your isa-assignment-stencil directory, begin by running the following:

1 wget https://cs.pomona.edu/classes/cs181ca/labs/lab09.zip
2 unzip lab09.zip
3 chmod +x lab09/setup.sh
4 ./lab09/setup.sh
5 scons build/RISCV/gem5.debug -j8

1 of 4 CS181CA Fall 2025

Lab 9 Branch Prediction Lab

1 Profiling Current Branch Predictors
1.1 Understanding the Environment
Start by looking at our hardware model as declared and defined in
configs/example/gem5_library/lab09.py. The configuration is relatively simple – there is a
basic Board that uses a custom processor for the purposes of this lab that exposes the branch
predictor. We can set the branch predictor without needing to recompile the simulator backend
by using the --bp parameter as the input to our simulated run.

From the candidate options, we can see that the branch predictor options are “LocalBP”,
“TournamentBP”, “TAGE”, and “Lab09”. The LocalBP describes a simple 2-bit dynamic branch
predictor, the TournamentBP describes a branch predictor that tracks local and global updates to
dynamically determine which is more effective at any moment in time, the TAGE branch predictor
describes the state-of-the-art predictor that is used in many commodity processors today, and
you will implement the Lab09 branch predictor by the end of the lab (for now, it always predicts
“not-taken”).

We are also provided with several microbenchmarks (e.g., toy programs that implement well
defined, toggle-able behaviors) in the lab09-tests directory. These are binary files fetched from
gem5 resources that are precompiled for RISC-V, and exhibit various degrees of ease with which
branches can be predicted. In particular, the external resources describe the workloads as the
following:

1. CCa.RISCV describes a workload in which branches are biased

2. CCe.RISCV describes a workload in which branches are easy to predict

3. CCh.RISCV describes a workload in which branches are impossible to predict

4. CCm.RISCV describes a workload in which branches are heavily biased

5. CRf.RISCV describes a workload in which control instructions are recursive calls to imple-
ment Fibonacci computations

1.2 Your Task
Think about how you would expect the predictors to behave for each of these workloads. For
example, how do you expect a simple predictor to perform relative to a state-of-the-art predictor
for a simple prediction task? Would you expect the same result to hold for a more complex task?
Would the relative differences be the same? Let these questions serve as an initial hypothesis
for the expected behavior that we can then work towards confirming or denying. In asking
and answering this question, we will inform our understanding of both the workloads and the
effectiveness of the branch predictors!

After the runs complete, you may find it useful to digest the outputted stats.txt files. In
particular, if you search for “branch” in this stats file, you will find all sorts of metrics and
breakdowns of the behavior of the branch predictor for each of these workloads. Note, we are
interested in understanding the runtime performance of the workload while tweaking this sole
independent variable and the prediction performance of the branch predictor. This will help
us correlate the impact of improvements/worsening performance in various contexts.

2 of 4 CS181CA Fall 2025

https://resources.gem5.org/

Lab 9 Branch Prediction Lab

2 Implementing a New Branch Predictor
2.1 The Abstract Branch Predictor
Branch predictors in gem5 are declared and defined in the src/cpu/pred directory. From here,
they extend a base abstract class declared and defined in bpred_unit.{hh, cc}. When you
navigate to these files, you will notice that there are several key functions declared:

1 /**
2 * Looks up a given conditional branch PC of in the BP to see if it
3 * is taken or not taken.
4 * @param pc The PC to look up.
5 * @param bp_history Pointer that will be set to an object that
6 * has the branch predictor state associated with the lookup.
7 * @return Whether the branch is taken or not taken.
8 */
9 virtual bool lookup(ThreadID tid, Addr pc, void * &bp_history) = 0;

10

11 /**
12 * Ones done with the prediction this function updates the
13 * path and global history. All branches call this function
14 * including unconditional once.
15 * @param tid The thread id.
16 * @param PC The branch's PC that will be updated.
17 * @param uncond Wheather or not this branch is an unconditional branch.
18 * @param taken Whether or not the branch was taken
19 * @param target The final target of branch. Some modern
20 * predictors use the target in their history.
21 * @param bp_history Pointer that will be set to an object that
22 * has the branch predictor state associated with the lookup.
23 */
24 virtual void updateHistories(ThreadID tid, Addr pc, bool uncond,
25 bool taken, Addr target, void * &bp_history) = 0;
26

27 /**
28 * @param tid The thread id.
29 * @param bp_history Pointer to the history object. The predictor
30 * will need to update any state and delete the object.
31 */
32 virtual void squash(ThreadID tid, void * &bp_history) = 0;
33

34

35 /**
36 * Updates the BP with taken/not taken information.
37 * @param tid The thread id.
38 * @param PC The branch's PC that will be updated.
39 * @param taken Whether the branch was taken or not taken.
40 * @param bp_history Pointer to the branch predictor state that is
41 * associated with the branch lookup that is being updated.
42 * @param squashed Set to true when this function is called during a
43 * squash operation.
44 * @param inst Static instruction information
45 * @param target The resolved target of the branch (only needed
46 * for squashed branches)
47 * @todo Make this update flexible enough to handle a global predictor.
48 */
49 virtual void update(ThreadID tid, Addr pc, bool taken,
50 void * &bp_history, bool squashed,
51 const StaticInstPtr &inst, Addr target) = 0;

What can we learn from these declarations? For a branch predictor to work, we need to

3 of 4 CS181CA Fall 2025

Lab 9 Branch Prediction Lab

have some way to lookup whether some current PC value has some metadata (e.g., bp_history,
which is defined as such to remain agnostic to the particular branch prediction algorithm) that
can inform whether or not we should predict branch taken (true) or branch not taken (false).

The updateHistories function is an abstract function that will be called by the processor
whenever it is appropriate to update any associated global metadata to help with the decision
making process. Note, the parameters to this function are an over-approximation of all of the
fields that might be relevant to the branch prediction algorithm. On the other hand, update is a
function that performs similar operations on a local basis (as you can see from the TODO, these
functions may some day be merged into a single function).

squash is called whenever a predicted branch has been determined not to have been evaluated
correctly. This implies that the pipeline is cleared of the incorrect instructions until the hazard
is ultimately resolved.

2.2 Your Task
Given this setup, your task is to implement a new branch predictor that implements each of
these functions. The branch predictor is declared and defined in src/cpu/pred/lab09.{hh,
cc} where the scaffolding predefines each of these functions with dummy placeholder values.
You may find it useful to first look at the src/cpu/pred/2bit_local.cc to see how these
functions are implemented when defining a two-bit dynamic branch predictor.

After you feel like you’ve implemented your random branch predictor, be sure to recompile
gem5 and try testing your implementation to study the overhead of this approach!

4 of 4 CS181CA Fall 2025

	Profiling Current Branch Predictors
	Understanding the Environment
	Your Task

	Implementing a New Branch Predictor
	The Abstract Branch Predictor
	Your Task

