Lab 5 Cache Assignment Gear Up

The goal of this lab is to gear-up to the cache assignment by building into the gem5 back-end.
In doing so, you will build a dummy “do-nothing cache” in the cache assignment scaffolding that
forwards traffic from the processor side to the memory side and sends memory responses back
to the processor. This lab assumes that you are working from the |cache assignment stencil| to
ensure that versions are consistent between remote resources from gemb and the expected run
targets.

Begin the lab by building the repository by running scons build/X86/gem5.debug -j<nproc>.
Note this step will take a while (4 /- an hour is not uncommon, but verify that the output is print-
ing the compiled files as the compilation process executes). If your build fails due to being killed,
it is likely an “out of memory” error. You can address this by running with “--linker=gold”
or other linkers described here.

1 File Overview

1.1 Configurations

This scaffolding has two main directories for you to be aware of: (D the configuration files that
you will use to run and test your code, and 2 the back-end source where you will define your
caches.

To find the configuration files, look in the directory configs/example/hw2/. In this directory,
you will find five files that declare the backend source files used for the simulation: notably
{hello-world, memtest}_{full, micro}cache.py and traffic-generator_test.py. In the
hello-world and memtest configurations, the simulator is configured to use a cache hierarchy
that uses the pre-built gem5 cache objects for the instruction and data caches, and uses your
custom cache as an L2 cache to run the programs defined in the hw2-tests directory (the source
is visible to you in src/hw2-tests). In particular, note that there is a line in the hello-
world_microcache.py configuration file that defines the cache hierarchy to be:
cache_hierarchy = PrivateLl1PrivateL2MicroCacheHierarchy (

11d_size="32KiB",
11i_size="16KiB",

The hierarchy is configured without explicitly defining the 12_size because the MicroCache
does not vary by size. On the other hand, the hello-world_fullcache.py configuration specifies
the 12_size and 12_assoc explicitly as implementing these features will be part of your task!

Traffic Generator. The traffic-generator does not run a program, but instead creates
custom dummy traffic to the memory system as if the processor were running a program with a
well defined behavior. Look through this file to see that this makes sense.

1.2 Back-End Source

In the back-end, you are also provided with scaffolding files in the src/mem/cache/hw2 directory.
Notably, there exists a header and source file for the MicroCache and FullCache classes in the
{micro,full}-cache.{hh,cc}. In this lab, we will be adding to the MicroCache class such that
it forwards traffic to memory rather than explicitly maintaining state. In the Cache Assignment,
you are asked to write logic that builds on top of these techniques in both the MicroCache and
FullCache to implement the desired functionality.

The majority of the scaffolding provided to you is in the header files of these classes. The
header files define several fields, including the processor- and memory-side port classes, instances

1 of CS181CA Fall 2025

https://github.com/pomona-cs181ca-po/cache-assignment-stencil
https://www.gem5.org/project/2023/02/16/benchmarking-linkers.html

Lab 5 Cache Assignment Gear Up

CpuSidePort::recvTimingReq sendToMem
handleRequest

7

sendToProc MemsSidePort::recvTimingResp

MicroCache

handleResponse

Figure 1: Designed flow control of cache assignment architecture. It’s up to you to deter-
mine what triggers each arrow to execute and what should happen in the handleRequest and
handleResponse functions!

of these ports that are accessible via the {cpu,mem}_port attributes of the class, along with
several helper functions:

e sendToProc(PacketPtr) is a wrapper function that takes a packet as input and makes the
appropriate call to the class port such that the data is appropriately transmitted to the
processor;

e sendToMem(PacketPtr) is a wrapper function that takes a packet as input and makes
the appropriate call to the class port such that the data is appropriately transmitted to
memory;

o makePacket (Addr, MemCmd is a function that will help you create new packets to poten-
tially forward to the processor- or memory-side components.

Beyond these functions, which you may find helpful, the class defines a CacheBlock struct
of which the MicroCache has one instance of (blk). Your job in the Cache Assignment is to
implement the logic in the handleRequest and handleResponse functions that implement the
desired cache behaviors to manipulate this field upon receiving a request from the processor or
a response from memory.

2 Designing a Do-Nothing Cache

Suppose we had a cache that always missed. What would this look like? Ultimately, this is the
goal of this section of the lab. In particular, we want to build a cache that receives requests
from the processor and, because the “do-nothing cache” does not maintain state, forwards these
requests to the next lowest level of the memory hierarchy to handle.

As you go through this lab, start thinking about how the logic changes if the caches does
maintain state, and the ways that your implementation will change as this cache is extended
from a do-nothing cache to a full MicroCache.

From Fig. we can see that information comes to the cache from the processor via the
handleRequest function. Therefore, if we want to implement a “do-nothing” cache, we need to
implement the behavior of having some information flow from handleRequest to sendToMem.

2 of CS181CA Fall 2025

g W N R

Lab 5 Cache Assignment Gear Up

Let’s start extending our scaffolding to implement this behavior! In particular, if we want
to take the packet received as input and have the next level of the memory hierarchy handle
its state, we need to call sendToMem with this packet as input. Where does it make sense to
implement this behavior? Well, it seems unlikely that this behavior should be characterized as
a hit, so let’s add it to the miss side of the branch!

void
MicroCache::handleRequest (PacketPtr pkt)
{
// TODO: complete this function!
bool hit = false;
if (hit) {
stats.hits++;
} else {
stats.misses++;
sendToMem (pkt); // add this call here!
}
}

We can recompile our simulator to verify that our changes compile and are functional. Do so
by rerunning your build command (i.e., scons build/X86/gem5.debug -j<nproc> --linker=gold).
After the build completes, we can test the “do-nothing” implementation of the MicroCache
against the hello-world_microcache.py configuration by running ./build/X86/gem5.debug
configs/example/hw2/hello-world_microcache.py. Does the program work? How can you
tell? (see next page for answer)

3 of CS181CA Fall 2025

Lab 5 Cache Assignment Gear Up

Unfortunately, our code didn’t execute to completion. We can tell because we did not get
a clean exit in the output (i.e., Exiting @ tick <n> because exiting with last active
thread context.). This means we’ll have to debug what went wrong!

2.1 Debugging gemb

Because our code didn’t execute correctly, it is worth running it through the debugger to examine
its intermediate state and deduce what went wrong. We can do so by launching gdb:

gdb --args ./build/X86/gemb.debug configs/example/hw2/hello-world_microcache.py

Our program doesn’t crash, so it’s worth trying to deduce how many times through our new
code the debugger gets to execute. A trick to do this is to set a breakpoint at the beginning of
the execution, and ignore the breakpoint n times for some large number n. Then, we can rerun
the program from the beginning and ignore the breakpoint n —1 times to get to the last instance
where this function executed.

(gdb) b micro-cache.cc:64

Breakpoint 1 at 0x29062ec: file src/mem/cache/hw2/micro-cache.cc, line 65.

(gdb) ignore 1 100000

Will ignore next 100000 crossings of breakpoint 1.

(gdb) r

Starting program: /home/stum2025/cache-assignment-stencil/build/X86/gemb.debug configs/
example/hw2/hello-world_microcache.py

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/1ib64/libthread_db.so.1".

gemb5 Simulator System. https://www.gemb.org

gemb is copyrighted software; use the --copyright option for details.

gemb5 version 24.1.0.3

; gemb executing on itbdcv-1nxO04p.campus.pomona.edu, pid 53803

command line: /home/stum2025/cache-assignment-stencil/build/X86/gem5.debug configs/
example/hw2/hello-world_microcache.py

Global frequency set at 1000000000000 ticks per second

warn: No dot file generated. Please install pydot to generate the dot file and pdf.

src/mem/dram_interface.cc:690: warn: DRAM device capacity (8192 Mbytes) does not match
the address range assigned (32 Mbytes)

src/base/statistics.hh:279: warn: One of the stats is a legacy stat. Legacy stat is a
stat that does not belong to any statistics::Group. Legacy stat is deprecated.

src/mem/coherent_xbar.cc:140: warn: CoherentXBar board.cache_hierarchy.membus has no
snooping ports attached!

board.remote_gdb: Listening for connections on port 7000

src/sim/simulate.cc:199: info: Entering event queue @ 0. Starting simulation...

~C

Program received signal SIGINT, Interrupt.

info bstd::_Vector_base<double, std::allocator<double> >::_Vector_base (

this=0x7fffffffb760, _ n=8, __a=...)
at /opt/rh/gcc-toolset-11/root/usr/include/c++/11/bits/stl_vector.h:305
305 { _M_create_storage(__n); }

Missing separate debuginfos, use: dnf debuginfo-install bzip2-1ibs-1.0.6-28.el1l8_10.
x86_64 xz-1libs-5.2.4-4.e18_6.x86_64
(gdb) info b
Num Type Disp Enb Address What
1 breakpoint keep y 0x00000000029062ec in gemb::memory::MicroCache::
handleRequest (gem5::Packet*) at src/mem/cache/hw2/micro-cache.cc:65
breakpoint already hit 1 time
ignore next 99999 hits

In this case, our n = 1! So let’s ignore our breakpoint n — 1 times to get to the last time this
function executes during the program execution.

4 of CS181CA Fall 2025

Lab 5 Cache Assignment Gear Up

(gdb) info b
Num Type Disp Enb Address What
1 breakpoint keep y 0x00000000029062ec in gemb5::memory::MicroCache::
handleRequest (gem5::Packet*) at src/mem/cache/hw2/micro-cache.cc:65
breakpoint already hit 1 time
ignore next 99999 hits
(gdb) ignore 1 0
Will stop next time breakpoint 1 is reached.
(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /home/stum2025/cache-assignment-stencil/build/X86/gemb.debug configs/
example/hw2/hello-world_microcache.py
[Thread debugging using libthread_db enabled]

; Using host libthread_db library "/1ib64/libthread_db.so.1".

gemb Simulator System. https://www.gemb.org
gemb5 is copyrighted software; use the --copyright option for details.

gemb version 24.1.0.3

gemb executing on itbdcv-1nx04p.campus.pomona.edu, pid 55804

command line: /home/stum2025/cache-assignment-stencil/build/X86/gem5.debug configs/
example/hw2/hello-world_microcache.py

Global frequency set at 1000000000000 ticks per second

warn: No dot file generated. Please install pydot to generate the dot file and pdf.

src/mem/dram_interface.cc:690: warn: DRAM device capacity (8192 Mbytes) does not match
the address range assigned (32 Mbytes)

src/base/statistics.hh:279: warn: One of the stats is a legacy stat. Legacy stat is a
stat that does not belong to any statistics::Group. Legacy stat is deprecated.

src/mem/coherent_xbar.cc:140: warn: CoherentXBar board.cache_hierarchy.membus has no
snooping ports attached!

board.remote_gdb: Listening for connections on port 7000

src/sim/simulate.cc:199: info: Entering event queue @ 0. Starting simulation...

Breakpoint 1, gemb5::memory::MicroCache::handleRequest (this=0x494dff0, pkt=
0x4e21d60) at src/mem/cache/hw2/micro-cache.cc:65
65 bool hit = false;

Now that we’ve stopped the execution, we can examine all sorts of state, move to the next
lines of execution, step into function calls, etc. Some things that might be helpful are to look
at the state of the current packet, any queues or buffers in which you are storing state while
waiting for a request or response to come back, looking at the packet’s data, etc. For instance,
in this current execution, I show what happens if you examine some of the packet state before
performing subsequent lines of code and stepping into the scaffolding.

Breakpoint 1, gemb::memory::MicroCache::handleRequest (this=0x494dff0,
pkt=0x4e21d60) at src/mem/cache/hw2/micro-cache.cc:65

; 65 bool hit = false;

(gdb) p pkt->getAddr ()

5 $4 = 5888

(gdb) p pkt->print()

$5 = "ReadSharedReq [1700:173f] IF"

(gdb) p pkt->data

$6 = (gemb5::PacketDataPtr) Ox4e21d10 "!N"
(gdb) n

67 if (hit) {

(gdb)

3 71 stats.misses++;

(gdb) p hit
$7 = false
(gdb) n

5 of CS181CA Fall 2025

[CE N

Lab 5 Cache Assignment Gear Up

72 sendToMem (pkt) ;

(gdb) s

gemb : :memory::MicroCache::sendToMem (this=0x494dff0, pkt=0x4e21d60)
at src/mem/cache/hw2/micro-cache.hh:281

281 if (!pkt->needsResponse()) {

(gdb) n

285 mem_port.sendPacket (pkt) ;

(gdb) n

5 286 };

3 (gdb) [

Continuing.

Some of this may be useful, and some may not. Such is the plight of debugging!

You will notice that the first part of the Cache Assignment asks you to build a state machine
to guide your development. This is because maintaining a mental model of your larger goal can
help clarify lower level tasks to execute. System design is often about the transformation of
complex, abstract concepts into simple expressions of code! Given this, do you see anything in
the abstract system design that is unimplemented or incorrectly deployed in our design? (see
next page for answer)

6 of CS181CA Fall 2025

(S

Lab 5 Cache Assignment Gear Up

As you may have noticed, our “do-nothing” cache correctly sends requests to memory from
the processor side, but we do not send the responses from the memory back to the processor!
Thus, the last thing to do is to implement the handleResponse function to forward these data
back to the processor. Do so by adding the following line to your micro-cache. cc file:
void
MicroCache::handleResponse (PacketPtr pkt)

{

// TODO: complete this function!
sendToProc(pkt); // add this line!

Recompile your code (scons build/X86/gemb.debug) and rerun your code. Does it work?
If so, congratulations! #% you've completed the lab. If not, happy debugging & come by office
hours if you are still stuck!

7 of CS181CA Fall 2025

	File Overview
	Configurations
	Back-End Source

	Designing a Do-Nothing Cache
	Debugging gem5

