
Advanced Algorithms

Welcome back to campus
and to this class!

Plan for today:

• Algorithms review and Course Goals

• Structure of the course

• Exercise set

Who am I

- Prof. Michael Zlatin

- Ph.D. from Carnegie Mellon in
Pittsburgh, Pennsylvania. Still
getting used to this coast.

- I like all sports, currently
volleyball and rock climbing.

- Etc. etc.

Hiking in Switzerland. Me (left), cow (right).

Advanced Algorithms

That’s a bit vague . . .

What is an algorithm?

An algorithm is an answer to a class of problems

What is the length of the shortest path from A to F in this directed graph?

Intro Algorithms
Problems:
- Sorting a list of numbers
- Graph traversal
- Shortest way to get from node a to

node b in a graph
- Minimum spanning trees
- Flows?

Solutions:
- Bubble sort, merge sort
- Breadth First Search, Depth First Search
- Dijkstra’s algorithm, Bellman-Ford, FW . . .
- Prim’s, Kruskal’s
- Ford-Fulkerson, Edmonds-Karp

Algorithmic
Paradigms

How do we compare algorithms?
Dijkstra’s Algorithm
• Feasibility: always outputs a valid path from s to t in the graph

• Optimality: The path is always a shortest path

• Running time: on a graph with n nodes, and m edges, takes
𝑂(𝑚 + 𝑛 log 𝑛) time.

Last summer: “improvement”
on Dijkstra’s: 𝑂(𝑚 ⋅ log2/3 𝑛).
Best Paper Award at STOC 2025

Can we do it faster?

This is a good question

Faster algorithms for fundamental problems:

For example, MST:
- Naïve brute force: 2𝑚

- Kruskal [1956]: 𝑂(𝑚 ⋅ log 𝑚)

- Chazzele [2000]: 𝑂(𝑚 ⋅ 𝛼(𝑚)), where 𝛼 is the
inverse Ackerman function.

𝛼 222216

≈ 4

Time complexity and input size
• Depends on how you store the

graph.

• Graph on n nodes with m edges:
• Adjacency matrix: 𝑂(𝑛2)

• Adjacency list: 𝑂(𝑛 + 𝑚)

• We will always just assume it is
given as an adjacency list.

P

Q: Which problems will we be able to solve in practice?

A working definition: Those with poly-time algorithms

Theory. Definition is broad and robust.

Practice. Poly-time algorithms scale well on larger inputs

P

Q: Which problems admit polynomial time algorithms?

Can we do it faster?

Karp: Either all of these are in P,
or none are:

• SAT
• 3-SAT
• Clique
• Independent Set
• Vertex Cover
• Hamiltonian Cycle
• Subset Sum
• 3D-matching
• Steiner Tree

“It’s all or nothing baby”

Richard Karp

NP-hard: If there is a polynomial time algorithm
for an NP-hard problem, then there is a poly time
algorithm for all problems in NP.

Course Goals
•Goal #1: What are the outer reaches of problems in P

- Flows, cuts, matchings, linear programming. More paradigms.
- Utilize this toolbox effectively and communicate solutions well

•Goal #2: How do we handle problems for which we
believe an efficient algorithm does not exist?

- Fast algorithms for NP-hard problems: approximation and
parameterization

- Problems where the input is not fully known: online and streaming

Questions?

Logistics

• http://www.cs.pomona.edu/class
es/cs181aa/

My office is Edmunds 223

Office hours:

Monday 10:30 – 11:30am

Thursdays 2:40 – 4:00pm

By appointment

If I’m in my office, feel free to knock.

http://www.cs.pomona.edu/classes/cs181aa/
http://www.cs.pomona.edu/classes/cs181aa/
http://www.cs.pomona.edu/classes/cs181aa/

Workload

- Come to class and engage

- Exercise sets most weeks → due in class one week later

- Three / Four assignments:
- Test the core skills I want each student to take away from this course
- These are hard, collaboration is strongly encouraged
- Write up solutions yourself
- Due on gradescope

- Final Project

Resources

• Algorithm Design by Kleinberg and Tardos
 → Especially useful for the first part of the course
 →Copies in the Edmunds computer lab

• A Second Course in Algorithms by Tim Roughgarden
 → This is an online course
 → Great notes, videos on youtube.

• Design of Approximation Algorithms by Williamson and Shmoys
 → Best book on approx algos I know, copies in lab

AI policy
May use AI tools to:
• Ask questions, explain concepts
• Generate examples, quiz yourself
• Summarize lecture notes
• For pretty much for any reason you find useful

EXCEPT
• You may not use AI tools for assistance on

exercises / assignments.

- This not about evaluation, I genuinely believe that this is an important piece of the learning process
- Always feel free to come to me for help on assignments, I can give hints or guide your thought process

Slack

• Do people find this useful?

• Are you in it?

Complete the course survey!

	Slide 1: Advanced Algorithms
	Slide 2: Plan for today:
	Slide 3: Who am I
	Slide 4: Advanced Algorithms
	Slide 5: An algorithm is an answer to a class of problems
	Slide 6: Intro Algorithms
	Slide 7: How do we compare algorithms?
	Slide 8: Can we do it faster?
	Slide 9: Time complexity and input size
	Slide 10
	Slide 11
	Slide 12: Can we do it faster?
	Slide 13: Course Goals
	Slide 14: Logistics
	Slide 15: Workload
	Slide 16: Resources
	Slide 17: AI policy
	Slide 18: Slack

