Quiz #1 material

1/1, short answer, pencil and paper work (no coding)

1. zipf's law
2. regular expressions
3. probability basics

language modeling
MLE estimation (estimating from a corpus)
development set
perplexity
determining vocabulary
smoothing techniques
unit 1
word banks
interpolation
backoff

Simplified View of Linguistics

Admin

Assignment 2

Quiz #1
- Monday at the beginning of class (first 30 minutes)
- Open book and open notes

Quiz #1 material

T/F, short answer, pencil and paper work (no coding)

zipf's law
regular expressions
probability basics
language modeling
MLE estimation (estimating from a corpus)
development set
perplexity
determining vocabulary
smoothing techniques
unit 1
word banks
interpolation
backoff
Morphology

What is morphology?
- study of the internal structure of words
- morphology word-s jump-ing

Why might this be useful for NLP?
- generalization (runs, running, runner are related)
- additional information (it’s plural, past tense, etc)
- allows us to handle words we’ve never seen before
- smoothing?

New words

AP newswire stories from Feb 1988 – Dec 30, 1988
- 300K unique words

New words seen on Dec 31
- compounds: prenatal-care, publicly-funded, channel-switching, …
- New words:
 - dumbbells, groveled, fuzzier, oxidized, ex-presidency, puppetry, boulderlike, over-emphasized, antiprejudice

Morphology basics

Words are built up from morphemes
- stems (base/main part of the word)
- affixes
 - prefixes
 - precedes the stem
 - suffixes
 - follows the stem
 - infixes
 - inserted inside the stem
 - circumfixes
 - surrounds the stem
- Examples?

Morpheme examples

prefix
- circum- (circumnavigate)
- dis- (dislike)
- mis- (misunderstood)
- com-, de-, dis-, in-, re-, post-, trans-, …

suffix
- -able (movable)
- -ance (resistance)
- -ly (quickly)
- -tion, -ness, -ate, -ful, …
Morpheme examples

- infix
 - -fucking- (cinder-fucking-rello)
 - more common in other languages

- circumfix
 - doesn't really happen in English

- a-ing
 - a-running
 - a-jumping

More common in other languages

doesn't really happen in English

Agglutinative: Finnish

talo 'the-house'
kaup-pa 'the-shop'
talo-ni 'my house'
kaup-pa-ni 'my shop'
talo-ssa 'in the-house'
kaup-a-ssa 'in the-shop'
talo-ssa-ni 'in my house'
kaup-a-ssa-ni 'in my shop'
talo-i-ssa 'in the-houses'
kaup-o-i-ssa 'in the-shops'
talo-i-ssa-ni 'in my houses'
kaup-o-i-ssa-ni 'in my shops'

Stemming (baby lemmatization)

Reduce a word to the main stem/morpheme

- automate
- automates
- automatic
- automation
- run
- runs
- running

Stemming example

This is a poorly constructed example using the Porter stemmer.

This is a poorly construct example us the Porter stemmer.

https://text-processing.com/demo/stem/
Porter’s algorithm (1980)

Most common algorithm for stemming English
- Results suggest it is at least as good as other stemming options
- Multiple sequential phases of reductions using rules, e.g.
 - sses → ss
 - les → l
 - ional → ate
 - ional → tion

https://tartarus.org/~martin/PorterStemmer/

What is Syntax?

Study of the structure of language
- Examine the rules of how words interact and go together
- Rules governing grammaticality
- I will give you one perspective
 - no single correct theory of syntax
 - still an active field of research in linguistics
 - we will often use it as a tool/stepping stone for other applications

Structure in language

The man ___ all the way home.

what are some examples of words that can/can’t go here?

Structure in language

The man ___ all the way home.

why can’t some words go here?
Structure in language

The man flew all the way home.

Language is bound by a set of rules

It's not clear exactly the form of these rules, however, people can generally recognize them

This is syntax!

Syntax != Semantics

Colorless green ideas sleep furiously.

Syntax is only concerned with how words interact from a grammatical standpoint, not semantically (i.e. meaning)

Parts of speech

What are parts of speech (think 3rd grade)?

Parts of speech are constructed by grouping words that function similarly:
- with respect to the words that can occur nearby
- and by their morphological properties

Parts of speech

The man _____ all the way home.

ran
forgave
ate
shot
shouted
sat
slept
learned
hurt
integrated
programmed
washed
warned
walked
spoke
succeeded
survived
read
recorded
Parts of speech

What are the English parts of speech?

- 8 parts of speech:
 - Noun (person, place or thing)
 - Verb (actions and processes)
 - Adjective (modify nouns)
 - Adverb (modify verbs)
 - Preposition (on, in, by, to, with)
 - Determiners (a, an, the, what, which, that)
 - Conjunctions (and, but, or)
 - Particles (off, up)

English parts of speech

Brown corpus: 87 POS tags

- Derived from the Brown tagset
- Most common in NLP
- Many of the examples we'll show use this one

Penn Treebank: ~45 POS tags

- British National Corpus (C5 tagset): 61 tags
- C6 tagset: 148
- C7 tagset: 146
- C8 tagset: 171

Tagsets

Brown tagset:

C8 tagset:
http://ucrel.lancs.ac.uk/claws8tags.pdf

English Parts of Speech

Noun (person, place or thing)

- Singular (NN): dog, fork
- Plural (NNS): dogs, forks
- Proper (NNP, NNPS): John, Springfields
- Personal pronoun (PRP): I, you, he, she, they, it
- Wh-pronoun (WP): who, what

Verb (actions and processes)

- Base, infinitive (VB): eat
- Past tense (VBD): ate
- Gerund (VBG): eating
- Past participle (VBN): eaten
- Non 3rd person singular present tense (VBP): eat
- 3rd person singular present tense: (VBZ): eats
- Modal (MD): should, can
- To (TO): to (to eat)
English Parts of Speech (cont.)

Adjective (modify nouns)
- Basic (JJ): red, tall
- Comparative (JJR): redder, taller
- Superlative (JJS): reddest, tallest

Adverb (modify verbs)
- Basic (RB): quickly
- Comparative (RBR): quicker
- Superlative (RBS): quickest

Preposition (IN): on, in, by, to, with

Determiner:
- Basic (DT): a, an, the
- WH-determiner (WDT): which, that

Coordinating Conjunction (CC): and, but, or,

Particle (RP): off (took off), up (put up)

Closed vs. Open Class

Closed class categories are composed of a small, fixed set of grammatical function words for a given language.
- Pronouns, Prepositions, Modals, Determiners, Particles, Conjunctions

Open class categories have large number of words and new ones are easily invented.
- Nouns (Google, futon, iPad), Verbs (Google, futoning), Adjectives (geeky), Adverb (chompingly)

Part of speech tagging

Annotate each word in a sentence with a part-of-speech marker

Lowest level of syntactic analysis

John saw the saw and decided to take it to the table.

NNP VBD DT NN CC VBD TO VB PRP IN DT NN
Ambiguity in POS Tagging

I like candy.
VBP
(verb, non-3rd person, singular, present)

Time flies like an arrow.
IN
(preposition)

Does “like” play the same role (POS) in these sentences?

I bought it at the shop around the corner.
IN
(preposition)

I never got around to getting the car.
RP
(particle… on, off)

The cost of a new Prius is around $25K.
RB
(adverb)

Does “around” play the same role (POS) in these sentences?

Ambiguity in POS tagging

Like most language components, the challenge with POS tagging is ambiguity

Brown corpus analysis
- 11.5% of word types are ambiguous (this sounds promising!), but...
- 40% of word appearances are ambiguous
- Unfortunately, the ambiguous words tend to be the more frequently used words

How hard is it?

If I told you had a POS tagger that achieved 90% accuracy would you be impressed?
- Shouldn’t be… just picking the most frequent POS for a word gets you this

What about a POS tagger that achieves 93.7%?
- Still probably shouldn’t be… only need to add a basic module for handling unknown words

What about a POS tagger that achieves 100%?
- Should be suspicious… humans only achieve ~97%
- Probably overfitting (or cheating!)
POS Tagging Approaches

Rule-Based: Human crafted rules based on lexical and other linguistic knowledge

Learning-Based: Trained on human annotated corpora like the Penn Treebank
 - Statistical models: Hidden Markov Model (HMM), Maximum Entropy Markov Model (MEMM), Conditional Random Field (CRF), log-linear models, support vector machines (SVMs), neural networks
 - Rule learning: Transformation Based Learning (TBL)

The book discusses some of the more common approaches

Many publicly available:
- http://nlp.stanford.edu/links/statnlp.html (lists 15 different ones mostly publicly available!)
- http://www.coli.uni-saarland.de/~thorsten/tnt/

Constituency

Parts of speech can be thought of as the lowest level of syntactic information

Groups words together into categories

likes to eat candy.

What can/can’t go here?

Constituency

Words in languages tend to form into functional groups (parts of speech)

Groups of words (aka phrases) can also be grouped into functional groups
 - often some relation to parts of speech
 - though, more complex interactions

These phrase groups are called constituents
He likes to eat candy.

The man in the hat ran to the park.

Common constituents

The man in the hat ran to the park.

Common constituents

Common constituents

Syntactic structure

Hierarchical: syntactic trees

The man in the hat ran to the park.

The man in the hat ran to the park.
Syntactic structure

Given a sentence, can we determine the syntactic structure?
Can we determine if a sentence is grammatical?
Can we determine how likely a sentence is to be grammatical? to be an English sentence?
Can we generate candidate, grammatical sentences?

Grammars

What is a grammar (3rd grade again...)?
Grammars

Grammar is a set of structural rules that govern the composition of sentences, phrases and words.

Lots of different kinds of grammars:
- regular
- context-free
- context-sensitive
- recursively enumerable
- transformation grammars

States

What is the capital of this state? Jefferson City (Missouri)

Context free grammar

How many people have heard of them?

Look like:

\[S \rightarrow \text{NP VP} \]

left hand side right hand side
(single symbol) (one or more symbols)

Formally...

\[G = (NT, T, P, S) \]

- NT: finite set of nonterminal symbols
- T: finite set of terminal symbols, NT and T are disjoint
- P: finite set of productions of the form \(A \rightarrow \alpha, \ A \in NT \) and \(\alpha \in (T \cup NT)^* \)
- \(S \in NT \): start symbol
CFG: Example

Many possible CFGs for English, here is an example (fragment):

\[
S \rightarrow NP \ VP \\
VP \rightarrow V \ NP \\
NP \rightarrow \text{DetP N | DetP AdjP N} \\
\text{AdjP} \rightarrow \text{Adj | Adv AdjP} \\
N \rightarrow \text{boy | girl} \\
V \rightarrow \text{sees | likes} \\
\text{Adj} \rightarrow \text{big | small} \\
\text{Adv} \rightarrow \text{very} \\
\text{DetP} \rightarrow \text{a | the}
\]

Grammar questions

Can we determine if a sentence is grammatical?

Given a sentence, can we determine the syntactic structure?

Can we determine how likely a sentence is to be grammatical to be an English sentence?

Can we generate candidate, grammatical sentences?

Which of these can we answer with a CFG? How?

CFG: Example

Many possible CFGs for English, here is an example (fragment):

\[
S \rightarrow NP \ VP \\
VP \rightarrow V \ NP \\
NP \rightarrow \text{DetP N | DetP AdjP N} \\
\text{AdjP} \rightarrow \text{Adj | Adv AdjP} \\
N \rightarrow \text{boy | girl} \\
V \rightarrow \text{sees | likes} \\
\text{Adj} \rightarrow \text{big | small} \\
\text{Adv} \rightarrow \text{very} \\
\text{DetP} \rightarrow \text{a | the}
\]

Formal grammar definition:

\[
\text{NT: } \{S, NP, VP, \text{DetP}, N, \text{AdjP}, \text{Adj}, \text{Adv}\} \\
\text{T: } \{\text{boy, girl, sees, likes, big, small, very, a, the}\} \\
\text{P:}
\]

Often just specify the production rules

Grammar questions

Can we determine if a sentence is grammatical?

- Is it accepted/recognized by the grammar
- Applying rules right to left, do we get the start symbol?

Given a sentence, can we determine the syntactic structure?

- Keep track of the rules applied…

Can we determine how likely a sentence is to be grammatical to be an English sentence?

- Not yet… no notion of “likelihood” (probability)

Can we generate candidate, grammatical sentences?

- Start from the start symbol, randomly pick rules that apply (i.e. left hand side matches)