

Admin

Lab next class

Same time. Location TBA (likely just down the hall)

Today

Take home ideas:

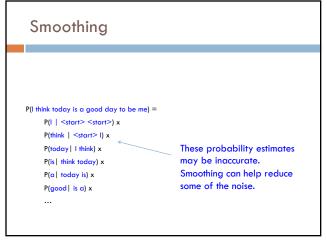
Key idea of smoothing is to redistribute the probability to handle less seen (or never seen) events

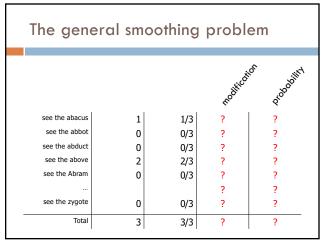
Still must always maintain a true probability distribution

Lots of ways of smoothing data

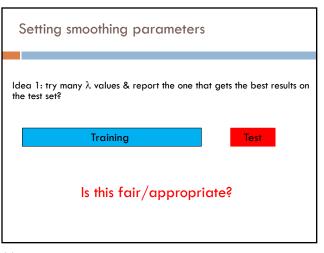
Should take into account characteristics of your data!

5





Add-lambda smoothing						
A large dictionary makes novel events too probable.						
dd $\lambda = 0.01$ to all a	counts					
see the abacus		4 (a		1 04/000		
	1	1/3	1.01	1.01/203		
see the abbot	0	0/3	0.01	0.01/203		
see the abduct	0	0/3	0.01	0.01/203		
see the above	2	2/3	2.01	2.01/203		
see the Abram	0	0/3	0.01	0.01/203		
			0.01	0.01/203		
see the zygote	0	0/3	0.01	0.01/203		
Total	3	3/3	203			



Setting smoothing parameters					
Full trainin	ng Test				
Training	Dev.				
collect counts from 90% of the data	pick λ that gets best results on development data (10% of training)				
12					

Add-lambda smoothing

1

0

0

2

0

0

3

1/3

0/3

0/3

2/3

0/3

0/3

3/3

1.01

0.01

0.01

2.01

0.01

0.01

0.01

203

1.01/203

0.01/203

0.01/203

2.01/203

0.01/203

0.01/203

0.01/203

How should we pick lambda?

see the abacus

see the abbot

see the abduct

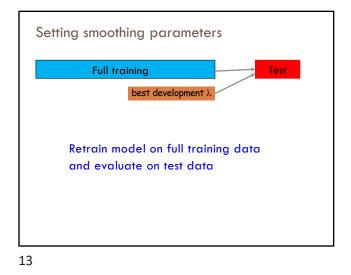
see the above

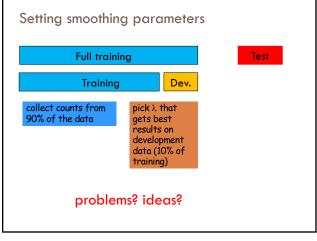
see the Abram

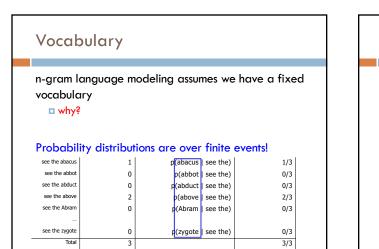
see the zygote

10

Total







Vocabulary

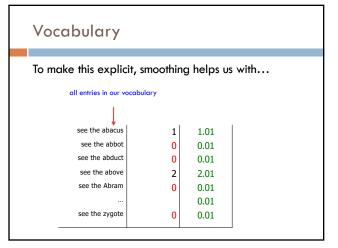
n-gram language modeling assumes we have a fixed vocabulary

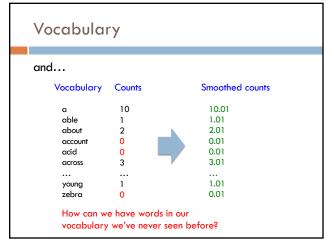
why?

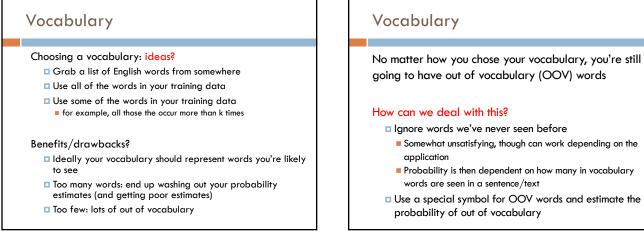
Probability distributions are over finite events!

What happens when we encounter a word not in our vocabulary (Out Of Vocabulary)?

- If we don't do anything, prob = 0 (or it's not defined)
- Smoothing doesn't really help us with this!







Out of vocabulary

Add an extra word in your vocabulary to denote OOV (e.g., <OOV>, <UNK>)

Replace all words in your training corpus not in the vocabulary with <UNK>

□ You'll get bigrams, trigrams, etc with <UNK>

■ p(<UNK> | "I am") ■ p(fast | "I <UNK>")

During testing, similarly replace all OOV with <UNK>

21

Choosing a vocabulary

A common approach (and the one we'll use for the assignment):

- Replace the first occurrence of each word by <UNK> in a data set
- Estimate probabilities normally

Vocabulary then is all words that occurred two or more times

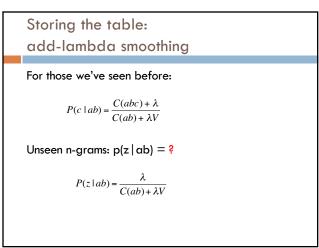
This also discounts all word counts by 1 and gives that probability mass to <UNK>

22

Storing the table							
	How are we storing this table? Should we store all entries?						
see the abacus	1	1/3	1.01	1.01/203			
see the abbot	0	0/3	0.01	0.01/203			
see the abduct	0	0/3	0.01	0.01/203			
see the above	2	2/3	2.01	2.01/203			
see the Abram	0	0/3	0.01	0.01/203			
			0.01	0.01/203			
see the zygote	0	0/3	0.01	0.01/203			
Total	3	3/3	203				

Storing the table Hashtable (e.g. HashMap) fast retrieval fairly good memory usage Only store those entries of things we've seen □ for example, we don't store |V|³ trigrams/probabilities For trigrams we can: Store one hashtable with bigrams as keys Store a hashtable of hashtables (I'm recommending this)

Storing the table: add-lambda smoothing					
For those we've seen before:					
Unsmoothed (MLE) add-lambda smoothing				ambda smoothing	
$P(c \mid ab) =$	$\frac{C(abc)}{C(ab)}$			$P(c \mid a)$	$b) = \frac{C(abc) + \lambda}{C(ab) + ?}$
see the abacus see the abdot see the abduct see the above see the Abram	1 0 0 2 0	1/3 0/3 0/3 2/3 0/3	1.01 0.01 2.01 0.01 0.01	1.01/203 0.01/203 0.01/203 2.01/203 0.01/203 0.01/203	What value do we need here to make sure it stays a probability distribution?
see the zygote	0	0/3 3/3	0.01	0.01/203	



Problems with frequency based smoothing				
The following bigrams have never been seen:				
p(X San) p(X ate)				
Which would add-lambda pick as most likely?				
Which would you pick?				
28				

Storing the table:

For those we've seen before:

Unsmoothed (MLE)

 $P(c \mid ab) = \frac{C(abc)}{C(ab)}$

see the abacus

see the abbot

see the abduct

see the above

see the Abram

see the zygote

26

Total

add-lambda smoothing

1

0

0

2

0

0

3

1/3 1.01

0/3 0.01

0/3 0.01

2/3 2.01

0/3 0.01

0/3 0.01

3/3 203

0.01

add-lambda smoothing

 $P(c \mid ab) = \frac{C(abc) + \lambda}{C(ab) + \lambda V}$

For each word in the vocabulary, we pretend we've seen it λ times more (V = vocabulary size).

1.01/203

0.01/203

0.01/203

2.01/203

0.01/203

0.01/203

0.01/203

Problems with frequency based smoothing The following trigrams have never been seen: $p(car \mid see the) \qquad p(zygote \mid see the)$ $p(kumquat \mid see the)$ Which would add-lambda pick as most likely? Witten-Bell?

Which would you pick?

Better smoothing approaches							
Utiliz	Utilize information in lower-order models						
trigram	p(car see the)	p(zygote see the)	p(kumquat see the)				
bigram	p(car the)	p(zygote the)	p(kumquat the)				
unigram	p(car)	p(zygote)	p(kumquat)				

Witten-Bell Discounting

context of words

words w_k

30

Probability mass is shifted around, depending on the

If $P(w_i | w_{i-1}, \dots, w_{i-m}) = 0$, then the smoothed

probability $P_{WB}(w_i \mid w_{i-1}, \dots, w_{i-m})$ is higher if the

sequence w_{i-1}, \ldots, w_{i-m} occurs with many different

Better smoothing approaches

Utilize information in lower-order models

Interpolation

Combine probabilities of lower-order models in some linear combination

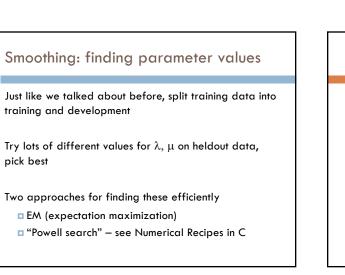
Backoff

$$P(z \mid xy) = \begin{cases} \frac{C^*(xyz)}{C(xy)} & \text{if } C(xyz) > h\\ \alpha(xy)P(z \mid y) & \text{otherwise} \end{cases}$$

Often k = 0 (or 1)

Combine the probabilities by "backing off" to lower models only when we don't have enough information

36



Backoff models: absolute discounting

Smoothing: simple interpolation

 $P(z \mid xy) \approx \lambda \frac{C(xyz)}{C(xy)} + \mu \frac{C(yz)}{C(y)} + (1 - \lambda - \mu) \frac{C(z)}{C(\bullet)}$

Trigram is very context specific, very noisy

Unigram is context-independent, smooth

How should we determine λ and μ ?

combination

37

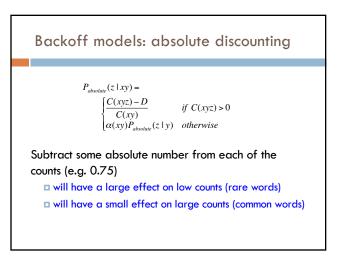
Interpolate Trigram, Bigram, Unigram for best

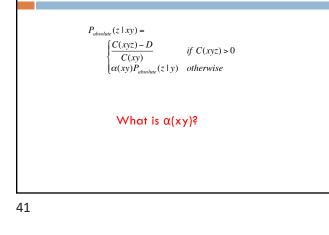
$$\begin{split} P_{absolute}(z \mid xy) &= \\ \begin{cases} \frac{C(xyz) - D}{C(xy)} & \text{if } C(xyz) > 0 \\ \alpha(xy) P_{absolute}(z \mid y) & \text{otherwise} \end{cases} \end{split}$$

Subtract some absolute number from each of the counts (e.g. 0.75)

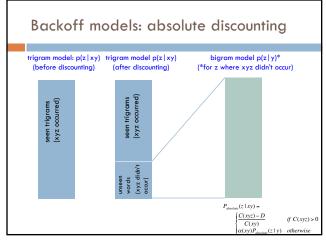
How will this affect rare words?

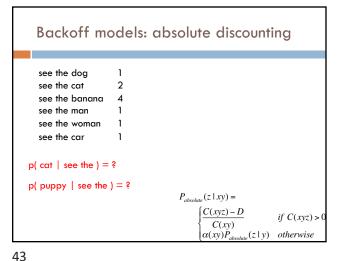
How will this affect common words?

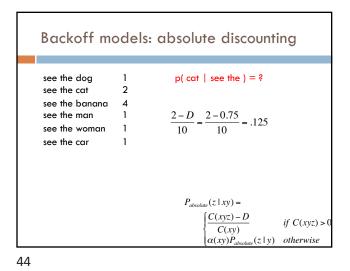


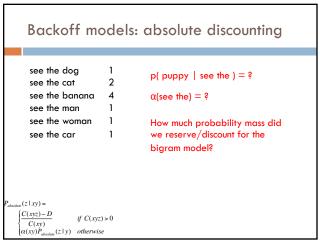


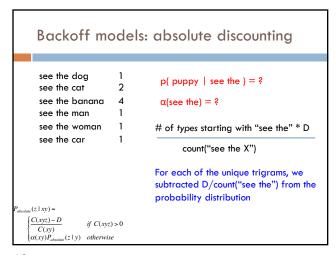
Backoff models: absolute discounting

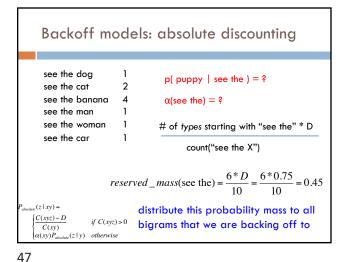


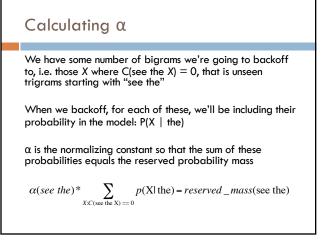


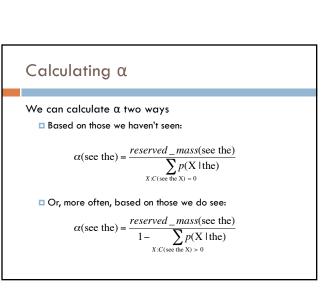


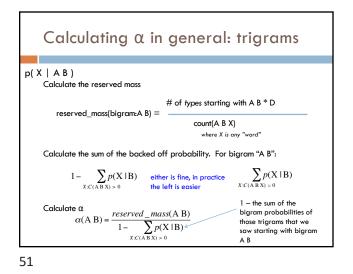












Calculating α

49

 α (see the)* $\sum_{X:C(\text{see the } X)=0} p(X|\text{ the}) = reserved _mass(\text{see the})$

 $\alpha(\text{see the}) = \frac{reserved_mass(\text{see the})}{\sum_{X:C(\text{see the } X) = 0} p(X \mid \text{the})}$

