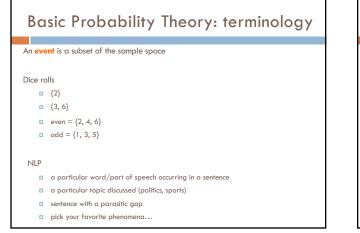
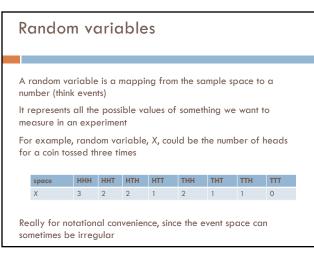

Admin
Assignment 1 advice
test individual components of your regex first, then put them all together
write test cases
Office hours posted
Mentor hours posted
2


Why probability?


Prostitutes Appeal to Pope

Language is ambiguous

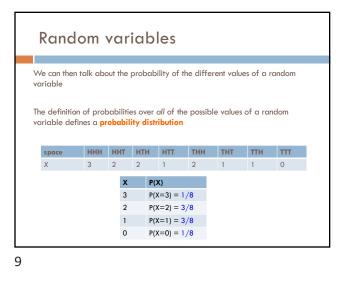
Probability theory gives us a tool to model this ambiguity in reasonable ways.

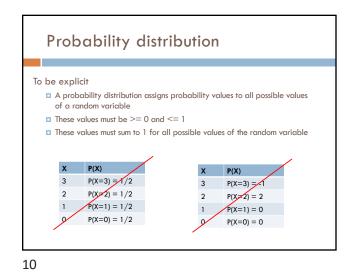
	Random variables										
vc Th	We can then talk about the probability of the different values of a random variable The definition of probabilities over all of the possible values of a random variable defines a probability distribution										
	space	HHH	HHT		Ή	HTT	THH	THT	TTH	TTT	
	Х	3	2	2		1	2	1	1	0	
			2	x	P()	K)					
	3			3	P()	(=3) = ?					
			1	2	P()	(=2) = ?					
				1	P()	(=1) = ?					
			(0	P()	(=0) = ?					

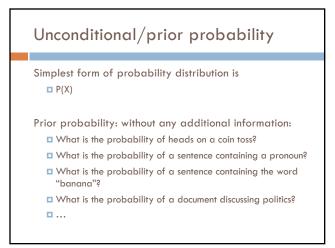
Events

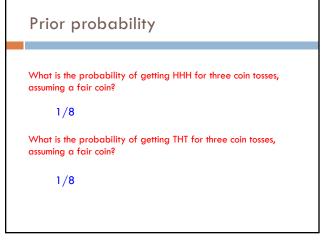
□ p({2})

p(even)


□ p(odd)


6


p(parasitic gap)


We're interested in probabilities of events

p(first word in a sentence is "banana")

I a trat	ما : مع بنام .	ution					
Joint distribution							
Ne can als	o talk about	t probability distribution	s over multiple				
ariables							
P(X,Y)							
	bility of X and	Y					
a distri	, bution over the	e cross product of possible va	lues				
a distribution over the cross product of possible values							
NLPPass	P(NLPPass)						
NLPPass true	P(NLPPass)	NLPPass, EngPass	P(NLPPass, EngPass)				
		NLPPass, EngPass true, true					
true false	0.89 0.11		EngPass)				
true	0.89	true, true	EngPass) .88				
true false	0.89 0.11	true, true true, false	EngPass) .88 .01				
true false EngPass	0.89 0.11 P(EngPass)	true, true true, false false, true	EngPass) .88 .01 .04				

Joint distribution						
$P(x) = \sum_{y \in Y} p(x, y)$ Called "marginalization", aka summing over a variable						
$\overline{y \in Y}$	Call					
y∈Y NLPPass, EngPass	Call					
<i>y</i> ∈ <i>Y</i>	Call sumr P(NLPPass,					
y∈Y NLPPass, EngPass	Call sumr P(NLPPass, EngPass)					
$y \in Y$ NLPPass, EngPass true, true	Call- sumr P(NLPPass, EngPass) .88					

All questions/probabilities of the two variables can be calculated

What is P(ENGPass)?

P(NLPPass, EngPass)

.88

.01

.04

.07

Joint distribution

Still a probability distribution all values between 0 and 1, inclusive

all values sum to 1

from the joint distribution

NLPPass, EngPass

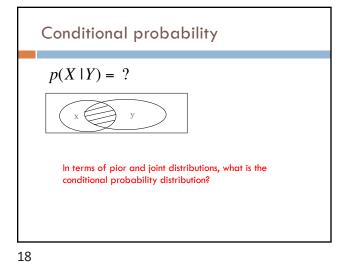
true, true

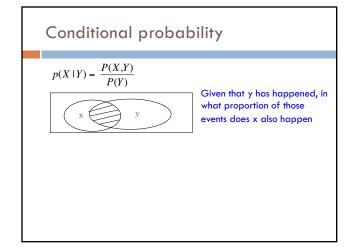
true, false false, true

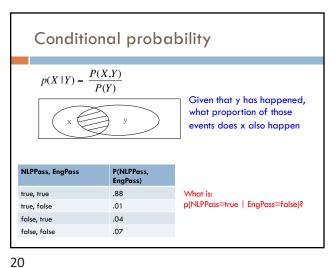
false, false

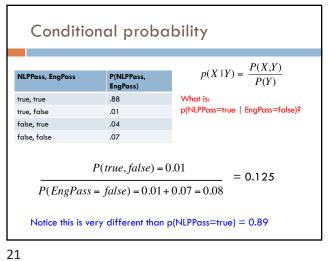
14

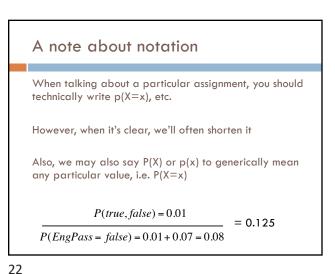
Conditional probability

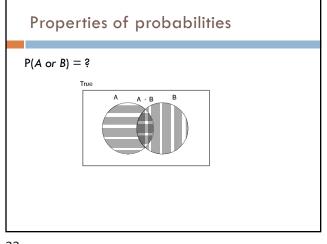

As we learn more information, we can update our probability distribution

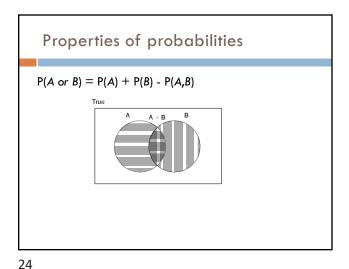

P(X | Y) models this (read "probability of X given Y")

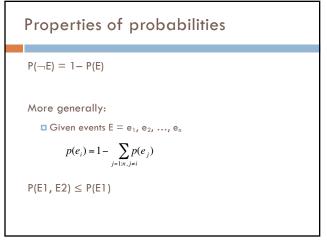

- What is the probability of heads given that both sides of the coin are heads?
- What is the probability the document is about politics, given that it contains the word "Clinton"?
- What is the probability of the word "banana" given that the sentence also contains the word "split"?

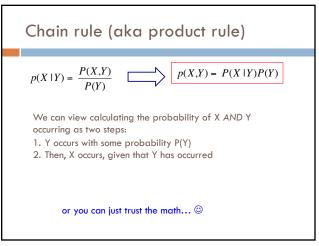

Notice that it is still a distribution over the values of X







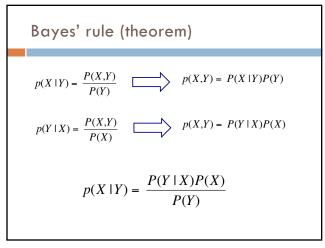


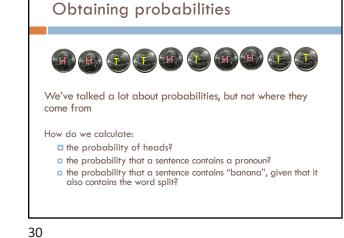


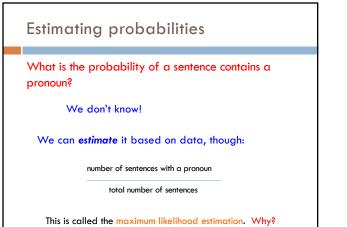
Chain rule

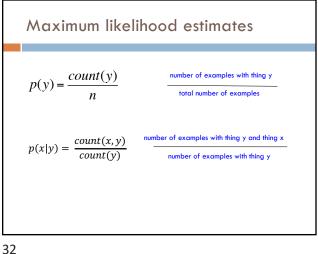
$$\begin{split} p(X,Y,Z) &= \ P(X \mid Y,Z) P(Y,Z) \\ p(X,Y,Z) &= \ P(X,Y \mid Z) P(Z) \\ p(X,Y,Z) &= \ P(X \mid Y,Z) P(Y \mid Z) P(Z) \\ p(X,Y,Z) &= \ P(Y,Z \mid X) P(X) \end{split}$$

$$p(X_1, X_2, ..., X_n) = ?$$


Applications of the chain rule
We saw that we could calculate the individual prior probabilities
using the joint distribution

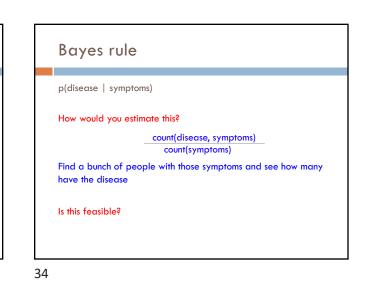

$$p(x) = \sum_{y \in Y} p(x, y)$$
What if we don't have the joint distribution, but do have
conditional probability information:

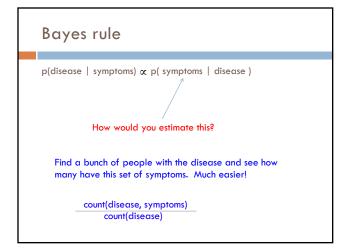

$$P(Y)$$

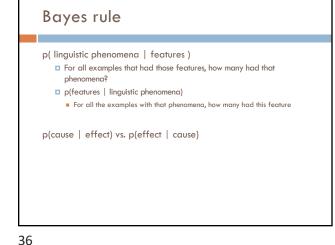

$$P(X|Y)$$

$$p(x) = \sum_{y \in Y} p(y)p(x | y)$$

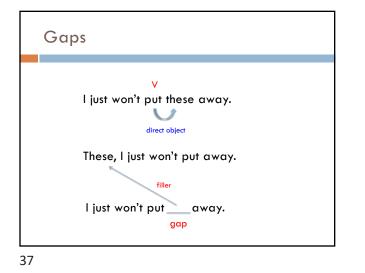
Bayes rule

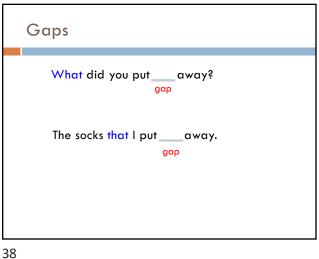

Allows us to talk about $P(Y \,|\, X)$ rather than $P(X \,|\, Y)$

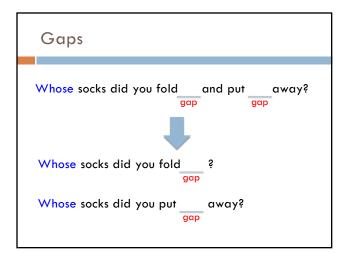

Sometimes this can be more intuitive

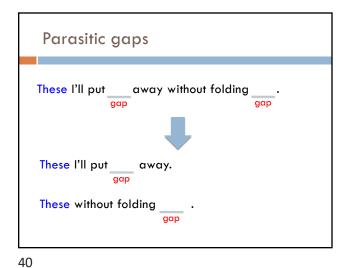

Why?

$$p(X \mid Y) = \frac{P(Y \mid X)P(X)}{P(Y)}$$


33

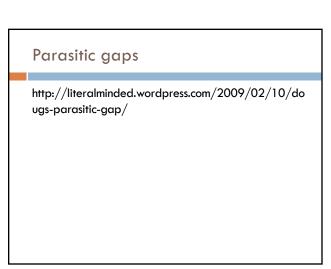






35

Parasitic gaps
These I'll putaway without folding gapgap
1. Cannot exist by themselves (parasitic)
These I'll put my pants away without folding
2. They're optional
These I'll put away without folding them.

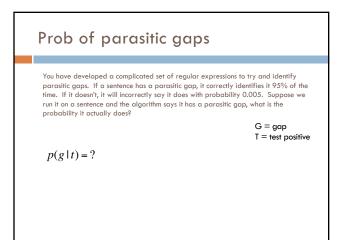


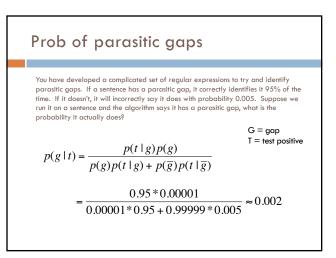
Frequency of parasitic gaps

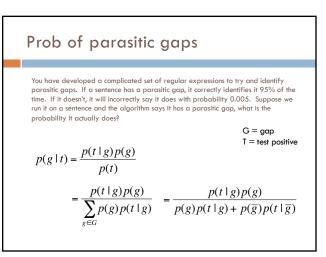
Parasitic gaps occur on average in 1/100,000 sentences

Problem:

You have developed a complicated set of regular expressions to try and identify parasitic gaps. If a sentence has a parasitic gap, it correctly identifies it 95% of the time. If it doesn't, it will incorrectly say it does with probability 0.005. Suppose we run it on a sentence and the algorithm says it has a parasitic gap, what is the probability it actually is?


42


Prob of parasitic gaps


You have developed a complicated set of regular expressions to try and identify parasitic gaps. If a sentence has a parasitic gap, it correctly identifies it 95% of the time. If it doesn't, it will incorrectly say it does with probability 0.005. Suppose we run it on a sentence and the algorithm says it has a parasitic gap, what is the probability it actually does?

> G = gap T = test positive

What question do we want to ask?

