4/19/23

Admin

Final project proposals due today

Start working on the projects!

o Log hours that you work

Mentor hours this week?

LARGE LANGUAGE MODELS

David Kauchak
CS 159 — Spring 2023

1 2
A Single Neuron/Perceptron Activation functions
| ==
Input x1 E‘a:h ir\put contributes: hard threshold:
Weight w1 v
(1 ifin>T
g(im) = {0 otherwise
Weight w2
Input x2
—— Outputy sigmoid
/ threshold function
Input X3 = Weight wa g(x) = L+ ™
in= Ewix,.
! tanh x
Input x4




4/19/23

Many other activation functions

Rectified Linear Unit

Softmax (for probabilities)

Neural network

inputs

Individual
perceptrons/neurons

Neural network

some inputs are
inputs provided/entered

Neural network

inputs

each perceptron computes and
calculates an answer




4/19/23

Neural network

inputs

those answers become inputs
for the next level

Neural network

inputs

finally get the answer after all
levels compute

10

Recurrent neural networks

inputs

hidden layer(s)

output

Recurrent neural nets

I

h, = hidden layer output

x; = input

Y: = output

Figure 9.1 from Jurafsky and Martin

11

12




4/19/23

Recurrent neural networks Recurrent neural networks
== [
G —)
r ———
—— -/
( it ) ﬂ/ =
{ P )« % )
x; = input i
h,.; = hidden layer output from previous input
h: = hidden layer output Say you want the output of x1, x2, x3, ....
y: = output Figure 9.2 from Jurafsky and Martin
13 14
Recurrent neural networks Recurrent neural networks
== [
Y1
C—— [ C——
—— [ C——
( ¥, ) = { e ) = )
X1 h; X2
15 16



4/19/23

Recurrent neural networks Recurrent neural networks
== [
Y2
G — [ C——
[—— " [ C——
( ¥, ) = ) { P )« % )
hy X2 h, X3
17 18
Recurrent neural networks RNNs unrolled
== [
¥s —a—
C—— .
[ — S
7 (aET— (C——
( ¥, ) = ) g( = )‘ —
h, X3 1 //w/
Cho (= )
Figure 9.2 from Jurafsky and Martin
19

20



4/19/23

Still just a single neural network RNN language models
| ] |
w9 w9
U, W and V are the weight matrices E E
. m®w cC_—m®
v/ w o v/ w -
C hq )] ( X ) C hiq ) ( X )
x; = input
How can we use RNNs as language models p(w1, w2, ..., wn)2
h,.; = hidden layer output from previous input
h, = hidden layer output How do we input a word into a NN2
y: = output Figure 9.2 from Jurafsky and Martin
21 22
“One-hot” encoding RNN language model
| ] |
For a vocabulary of V words, have V input nodes 3
o
- % ) H
All inputs are O except the for the one corresponding to E P %
o
the word g >
C_m g
3
3
0 ;
L 0 . E_-é )
appl 2 2 o
pple Xi 3 g 2
o] banana o o S 9
o — o o
0 zebra

23 24



4/19/23

RNN language model
fr

p(w] |<s>) p(w2|<s> wl) p(w3|<s> wl w2) p(w4|<s>wl w2 w3)

E ;
@ SRR

So ong and thanks for

Softmax over u,ﬂ.ﬂ.:
Vocabulary Vh

Softmax = turn into probabilities

Figure 9.6 from Jurafsky and Martin

RNN language model
[

p(w1I<s>) p(w2|<s>wl) p(w3|<s>w] w2) p(w4| ¥s> wil w2w3 B
y |

Vocabulary Vh
Input
Embeddings

So ng nd thanks for

g
»

Softmax = turn into probabilities

Figure 9.6 from Jurafsky and Martin

25 26
RNN language model Training RNN LM
[ |
Softmax over y (k. ) Next word long and thanks fT afl
Vocabulary 5 ==
LR“N ] h*‘ 'ﬁ L1 ] J loss 2 1ogylong\ l—logyandl Coove] Ehgie] ozl - ;ZLQ
erioargs © $ $ $ Softmax over ? ?-M]L ?-mﬂ_u_ﬂ s
So long and thanks for Vocabulary Vh
o EER S It
- @ @ @ @
vﬁ Embeddings e
\IV) So ng n thanks for

Figure 9.6 from Jurafsky and Martin

27

28



4/19/23

Generation with RNN LM Stacked RNNs
[ |
Sampled Word So . i Iong/ i and/ i ? @
Nentiesy (g il
! i | RNN 3
Softmax i ! } i | | |
: 1 Il ’_L‘ ’—‘—‘ RNN 2
w T (= al)
R ) ( [—1—1] RNN 1 [ )
Embedding @ i i [% i [% X{1 x‘z )(‘3 X‘"
1 1 I
Input Word <s> i 'SO i I,Ong i gnd
[ [ [y
Figure 9.9 from Jurafsky and Martin Figure 9.10 from Jurafsky and Martin
29 30

Stacked RNNs

@
D%RNNS—G ]
)

i

L

!

|
X1 X2

- Multiple hidden layers
- Still just a single network run over a sequence
- Allows for better generalization, but can take longer to train and more datal

Challenges with RNN LMs

p(wl]<s>)
v_|

p(w2|<s>w1) p(w3|<s>wl w2)

plwa|<s>wlw2w3)

Softmax over

Vocabulary Vh

s

RNN
L

Input e
Embeddings

So long

What context is incorporated for predicting w;2

thanks for

31

32



4/19/23

Challenges with RNN LMs Bidirectional RNN
[

(W] |<5>) W2|<5> wi) p(w3|<s> w1 w2) p(w4|<s>wlw2w3)
| U concatenated
mJ].U.a ,—»U outputs

- N (o —mwe T 1)

- (8 o i ay
| =

So long and thanks for

Just like with an n-gram LM, only use previous history.
Normal forward RNN

T ) - 2
What are we missing if we're predicting p(w1, w2, ..., wn)? Figure 9.1 from Jurafsky and Martin

33 34

Bidirectional RNN Bidirectional RNN

[ |
¥4 Yo Y3 vq Yo Y3 Yn
concatenated U concatenated T
r——D outputs »U outputs
| I

i RNN2 ——
(S N A )

Backward RNN, starting from the last word

o)
{ H
(.

] RNN 2

e

)
T h
1
LT

Normal forward RNN

Figure 9.11 from Jurafsky and Martin Figure 9.11 from Jurafsky and Martin

35 36




4/19/23

Bidirectional RNN Challenges with RNN LMs
| ] |
¥q Yo Y3 Yn p(wl |<5>) p(w2|<s>w1) p(w3|<s> wl w2) p(wa|<s>wl w2 w3)
H concatenated s | |
“ f_’D outputs 1 Softmax over DJ]_“_]
Vocabulary Vh
! il
[ [ LI L RNN 2 DJ RN L]
Bl M R N
RNN 1
([L \_k ‘_k Emkljgpdt;tlngs @ @
\E‘J \@ \@ So long and thanks for
Prediction uses collected information from the words before (left) Can we use them for translation (and related tasks)?
and words after (right)
Figure 9.11 from Jurafsky and Martin Any chcllenges?
37 38

Challenges with RNN LMs

Nextworg  Osta luega Y gracias por

" e e s e e - 5
| ]
P8

long and thanks for

Can we use them for translation (and related tasks)?

Any challenges?

Challenges with RNN LMs
[

No laila 16'thi @ mahalo no nd mea a pau

meD
it

Next word

F

.

Embeddmgs

So

lon, and thanks for

a

Translation isn’t word-to-word

Worse for other tasks like summarization

39

40

10



4/19/23

Encoder-decoder models

Y1 Y2 Ym

Xy X *n

Idea:

Process the input sentence (e.g., sentence to be translated) with a network
Represent the sentence as some function of the hidden states (encoding)
Use this context to generate the output

Figure 9.16 from Jurafsky and Martin

Encoder-decoder models:
simple version

Target Text
A
o ) A A
llego i la” | bruja | verde </s>
[ - t
softmax (output of source is ignored) \
hidd
e I o e W
embedding i !
layer ! |
the green witch  arrived <> llego | la | bruja verde
VA [l [P ~
/ 4 % 17 7
~

S \{
Source Text eparator

The context is the final hidden state of the encoder and is provided
as input to the first step of the decoder

Figure 9.17 from Jurafsky and Martin

41

42

Encoder-decoder models:
improved

(output is ignored during encoding) 4

softmax
hidden
layer(s)

embedding 8 N

layer \ P ' ¢

! \ i |

X X2 X3 Xn <> 0 Vi Y Y
N » g [ L L7
Encoder

The context is some combination of all of the hidden states of the encoder

How is this better?

Figure 9.18 from Jurafsky and Martin

Encoder-decoder models:
improved

(output is ignored during encoding) 4

softmax
hidden
layer(s)
embedding N . B i
layer [ A !
| | ] i
X Xz X3 Xn S SR S R R TR )
< v [ 92 (9 w7
Encoder

The context is some combination of all of the hidden states of the encoder

Each step of decoding has access to the original, full encoding/context

Figure 9.18 from Jurafsky and Martin

43

44

11



4/19/23

Encoder-decoder models:

.
improved
Decoder
Vi | Y2 vi Y L </s>
(output is ignorpd during encoding) 4 A 4 L A 4
softmax P Cade ) | Gl
|
f i
i
hidden H E he, he,=c=h, [ . wl o lne E
layer(s) A - +
embedding | T ®
layer ! ! ! 8
1 H 1
% I X X 4N N Y
- 7 (g W
Encoder

Even with this model, different encoding steps may care about different parts
of the context

Encoder-decoder models:
improved

Decoder

(output is ignored Huring encoding)
softmax

= Sia s

Xy Xp X3 Xq

Encoder

of the context

Figure 9.18 from Jurafsky and Martin

Even with this model, different encoding steps may care about different parts

Figure 9.18 from Jurafsky and Martin

45

46

Attention
[

Decoder

> auhs

hidden
layer(s)

Encoder

Context is dependent on where we are in decoding step and the
relationship between encoder and decoder hidden states

Attention
[

Decoder

attention
weights
i

hidden
layer(s)

Encoder

between encoder and decoder hidden states)

Simple version attention is static, but can learn attention mechanism (i.e., relationship

Figure 9.23 from Jurafsky and Martin

47

48

12



4/19/23

Another model

Attention

Decoder

attention ¢
weights V3
ai; : .

hidden
layer(s)

Encoder

Key RNN challenge: computation is sequential

This prevents parallelization
Harder to model contextual dependencies

Figure 9.23 from Jurafsky and Martin

How is this setup different from the RNN2

Figure 10.1 from Jurafsky and Martin

50

49

Self-attention

Another model

Do not rely on the hidden states for context information

Parallel: computation can all happen at once

Figure 10.1 from Jurafsky and Martin

a
Self-Attention [ :::|
1

Layer

Self-attention:
- Input is some context (for LMs, the previous words)
- Learn what parts of the context are important based

Figure 10.1 from Jurafsky and Martin

52

51

13



4/19/23

Self-attention

Self-Attention
Layer

Figure 10.1 from Jurafsky and Martin

Transformer block

§

Transformer
Block &

Residual
i Feedforward Layer

Layer Normalize

<D
Residual
i Self-Attention Layer
¥

e - 6

Figure 10.4 from Jurafsky and Martin

53

54

Transformer network
=

Next word long and thanks for all

s
Loss  FTo8Yiong] 108 U] EloBvmmme] EI08¥ir] EIORGan] --- = 72 Ler

Nocabuian

Linear Layer

Transformer
Block

Input
Embeddings

Transformer network vs. RNN

Next word ]ong and  thanks
ko (J? C uhh :)
e Loy -

Transformer
Block

55

56

14



4/19/23

GPT Pre-trained language models

Generative: outputs things Pre-trained language models are general purpose and
are trained on a very large corpus

Pre-trained: previously trained on a large corpus They can be used as//is to:
Ask p(w1 w2 ... wn)
Transformer: uses the transformer network - Generate text given some seed, p(wi | w1l w2 ... wi-1

They can also be “fine-tuned” for particular tasks: take
the current weights and update them based on a specific
application

57 58

ChatGPT ChatGPT
= =

The fine-tuning process leveraged both supervised learning as well as
ChatGPT? is an artificial intelligence (Al) chatbot developed by OpenAl and released in November 2022. It reinforcement learning in a process called reinforcement learning from human
is built on top of OpenAl's GPT-3.5 and GPT-4 families of large language models (LLMs) and has been fine- feedback (RLHF)AmIB] Both approaches use human trainers to improve the
tuned (an approach to transfer learning) using both supervised and reinforcement learning techniques. model's performance. In the case of supervised learning, the model was provided
with conversations in which the trainers played both sides: the user and the Al
assistant. In the reinforcement learning step, human trainers first ranked
responses that the model had created in a previous conversation.® These
rankings were used to create "reward models" that were used to fine-tune the
model further by using several iterations of Proximal Policy Optimization
(ppo)v[n[m]

59 60

15



