

1

Schedule for the rest of the semester

3

Admin

Assignment 7

Next Monday: project proposal presentations
\square informal

- 1 minute
\square See the final project handout for details

Hack week QA session from OpenAl engineer (Friday @ 12:30pm)

- https://5chack.com/\#hack-week

2

4

5

7

Apples vs. Bananas

Turn features into numerical values

Weight	Color	Label
4	0	Apple
5	1	Apple
6	1	Banana
3	0	Apple
7	1	Banana
8	1	Banana
6	1	Apple

We can view examples as points in an n-dimensional space where n is the number of features called the feature space

6

8

9

11

Another classification algorithm?

To classify an example d:
Label \boldsymbol{d} with the label of the closest example to \boldsymbol{d} in the training set

10

What about this example?

12

13

15

k-Nearest Neighbor (k-NN)

To classify an example d:
\square Find \boldsymbol{k} nearest neighbors of \boldsymbol{d}
\square Choose as the label the majority label within the \boldsymbol{k} nearest neighbors

Euclidean distance

Euclidean distance! (or L1 or cosine or ...)

$$
{ }_{\left(a_{1}, a_{2}, \ldots, a_{n}\right)}^{\left(b_{1}, b_{2}, \ldots, b_{n}\right)}
$$

$$
D(a, b)=\sqrt{\left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}+\ldots+\left(a_{n}-b_{n}\right)^{2}}
$$

17

19

18

20

21

23

22

24

28

Model assumptions
If you don't have strong assumptions about the model,
it can take you a longer to learn
Assume now that our model of the blue class is two
circles

29

31

30

32

33

34

35

36

37

38

Machine learning models

What were the model assumptions (if any) that $k-N N$ and NB made about the data?

Are there training data sets that could never be learned correctly by these algorithms?

40

41

Defining a line

Any pair of values $\left(w_{1}, w_{2}\right)$ defines a line through the origin:
$0=w_{1} f_{1}+w_{2} f_{2}$

43

Hyperplanes

A hyperplane is line/plane in a high dimensional space

What defines a line?
What defines a hyperplane?

42

44

45

47

46

48

49

51

50

52

Linear models

A linear model in n-dimensional space (i.e. n features) is define by $n+1$ weights:

In two dimensions, a line:

$$
0=w_{1} f_{1}+w_{2} f_{2}+b \quad(\text { where } \mathrm{b}=-\mathrm{a})
$$

In three dimensions, a plane:

$$
0=w_{1} f_{1}+w_{2} f_{2}+w_{3} f_{3}+b
$$

In n-dimensions, a hyperplane

$$
0=b+\sum_{i=1}^{n} w_{i} f_{i}
$$

53

Learning a linear model

Geometrically, we know what a linear model represents

Given a linear model (i.e. a set of weights and b) we can classify examples

55

54

56

57

Large margin classifier setup

Select the hyperplane with the largest margin where the points are classified correctly!

Setup as a constrained optimization problem:

$$
\begin{aligned}
& \max _{w, b} \operatorname{margin}(w, b) \\
& \text { subject to: } \\
& \quad y_{i}\left(w \cdot x_{i}+b\right)>0 \quad \forall i \quad \text { what does this say? } \\
& y_{:} \text {label for example } \mathrm{i}, \text { either } 1 \text { (positive) or }-1 \text { (negative) } \\
& x_{i} \text { our feature vector for example } \mathrm{i}
\end{aligned}
$$

58

60

61

Support vector machine problem

Posed as a quadratic optimization problem

Maximize/minimize a quadratic function

Subject to a set of linear constraints

Many, many variants of solving this problem

One of the most successful classification approaches

63

62

Support vector machines

One of the most successful (if not the most successful) classification approach:

decision tree	About $2,240,000$ results (0.32 sec)
Support vector machine	About 2,180,000 results (0.36 sec)
k nearest neighbor	About 844,000 results (0.33 sec)
Naïve Bayes	About 71,300 results (0.32 sec)
GOOg scholar	

64

Other successful classifiers in NLP

Perceptron algorithm
\square Linear classifier

- Trains "online"
- Fast and easy to implement
\square Often used for tuning parameters (not necessarily for classifying)

Logistic regression classifier (aka Maximum entropy classifier)
\square Probabilistic classifier
\square Doesn't have the NB constraints
\square Performs very well

- More computationally intensive to train than NB

71

