

1

Neural Networks

Neural Networks try to mimic the structure and function of our nervous system

People like biologically motivated approaches

3

Admin

Assignment 5a

Quiz on Wednesday (and that's it for the day!)

2

4

5

W is the strength of signal sent between A and B.

If A fires and w is positive, then A stimulates B.

If A fires and w is negative, then A inhibits B.

7

6

8

9

11

10

12

13

15

14

16

19

21

23

22

24

25

27

Hidden units/layers
Can have many layers of
hidden units of differing sizes

26

28

29

Neural networks

Recurrent network

History of Neural Networks

McCulloch and Pitts (1943) - introduced model of artificial neurons and suggested they could learn

Hebb (1949) - Simple updating rule for learning
Rosenblatt (1962) - the perceptron model
Minsky and Papert (1969) - wrote Perceptrons

Bryson and Ho (1969, but largely ignored until 1980s-Rosenblatt) - invented back-propagation learning for multilayer networks

Training the perceptron
First wave in neural networks in the 1960's
Single neuron
Trainable: its threshold and input weights can be modified
If the neuron doesn't give the desired output, then it has made a
mistake
Input weights and threshold can be changed according to a
learning algorithm

33

35

Examples - Logical operators

AND - if all inputs are 1 , return 1 , otherwise return 0

OR - if at least one input is 1 , return 1 , otherwise return 0

NOT - return the opposite of the input

XOR - if exactly one input is 1 , then return 1 , otherwise return 0

34

36

41

43

45

47

46

How about...

49

51

52

53

55

56

57

59

A method to the madness
blue $=$ positive
yellow triangles $=$ positive
all others negative

How did you figure this out (or some of it)?

58

Perceptron learning algorithm
repeat until you get all examples right:
for each "training" example:
- calculate current prediction on example
if wrong:
- update weights and threshold towards getting this example
correct

60

61

63

62

64

65

67

66

68

69

Perceptrons

1969 book by Marvin Minsky and Seymour Papert

The problem is that they can only work for classification problems that are linearly separable

Insufficiently expressive
"Important research problem" to investigate multilayer networks although they were pessimistic about their value

71

70

72

73

Training multilayer networks
perceptron learning: if the perceptron's output is different than the expected output, update the weights
gradient descent: compare output to label and adjust based on loss function

Any other problem with these for general NNs?

perceptron/
linear model

74

76

Backpropagation: intuition
Gradient descent method for learning weights by optimizing a loss function
1. calculate output of all nodes
2. calculate the weights for the output layer based on
the error
3. "backpropagate" errors through hidden layers

77

79

78

80

81

Mind reader game
https://web.media.mit.edu/~ guysatat/MindReader/index.html

83

