CS159 Machine Learning Lab

WANNA SEE %dﬂﬂl—liﬂﬁ WATCH. YOU PUT BREAD | THEN W A FEN MINUTES,

WEIRD? IN THIS SLOT AND PUSH TOAST FaPs LP!
__\(J*‘ DOWN THIS LEVER ..

v3 s
<> 4

In this class/lab today, we’re going to be playing with some of the machine learning techniques that
we’ve been talking about in class, in particular, we're going to compare Naive Bayes (NB) versus
multinomial logistic regression (MLR or maximum entropy classifier) for name gender identification.
Although we didn’t talk about explicitly about the MLR model in class, it’s one of the models that
tends to perform very well across a broad range of tasks.

@ 1586 Universal Fress Syndicate

https://www.gocomics.com/calvinandhobbes/1986/03/12

Both of these models allow us to classify multiple examples and both models are also probabilistic
classifiers. However, there are some difference. NB is a generative model, modeling the joint
distribution of p(label, features) and NB also has the naive Bayes assumption that the features
are independent given the class. MLR on the other hand is a discriminative model, modeling the
conditional distribution p(label|features) directly and does not have the strong assumptions of NB.

Name gender identification

Today, we’re going to try and classify first names as either male or female using machine learning.
In general, gender is not binary, but our dataset is limited to these two annotations. While names
are fluid and can be used for any gender, in practice, certain names tend to be used by certain
genders. Our goal is to try and use machine learning techniques to identify these general trends
and not to suggest that a name must be used/associated with a particular gender. Our dataset
does capture some of the flexibility of name usage and for some names does have then annotated
as both male and female.

Just to give you a feeling for what the task is and how well people can do it, try and label the
following ten names as most commonly used for either male or female (don’t peek at the next
page until you’ve got your answers!):

[Nettie |
Darci
Zalman
Stefa
Caprice
Nikos
Elisa
Winn
Marlyn
Harman

Nettie female
Darci female
Zalman male
Stefa, female
Caprice | female
Nikos male
Elisa female
Winn male
Marlyn | female
Harman | male

Do you agree with the annotations? For those you didn’t have a previous association with, how
did you know/guess that they were male or female?

Getting Started

To get started download the following file:

http://www.cs.pomona.edu/classes/cs159/lectures/ml_lab/lab_starter.zip

Data

In the data directory you’ll see three files:

e names.train a file containing approximately 7,000 names for training
e names.dev a development set of 500 names
e names.test a test set of 500 names (Do NOT look at this or use this until I tell you

to!)

Use grep to separate the male names and the female names. Spend a few minutes looking at
the names. Are there certain characteristics that female/male names have? How are the names
different? This should motivate features you might use later on.

Code

In the code directory I have included some code to get you started classifying these examples.
You may develop your code however you’d like. Below are instructions for Eclipse or via the
command-line. To get started in Eclipse:

1. Create a new Java project in Eclipse

2. copy the .java files into your source directory and refresh the project
3. Right-click on the project and select “Build Path -> Configure Build Path ...”

4. Select the “Libraries” tab and then click the “Add External JARs...” button. Browse to
ml_lab/code/ and select stanford-classifier. jar.

To get started from the command-line:

1. Change directories into the code directory.

2. To compile, type:

javac -cp stanford-classifier.jar:. *.java

3. and to run:

java -cp stanford-classifier.jar:. NameClassification

The current models

The starter code trains a NB model and a MLR model on the training data using 26 features based
on the occurrence of each of the 26 letters in the name. The code then classifies the development
set and prints out the classification accuracy and the log-prob for both of the models. You’ll need
to change the DATA_DIR constant to point at your data directory.

I’ve left in the call to .dump() for the MLR classifier to see what the weightings for the different
features are. The magnitude indicates how important the weight /feature is and the sign, whether
or not it is an indicator or an inhibitor for that class. Which feature(s) are most indicative of each
class? We can also call .dump() on the NB model. Are the most indicative features similar?

The best model

For the rest of this lab, I'd like you to try and come up with what you think is your best classifier
for both NB and MLR. Do NOT look at the test data yet. You should only be playing with the
training and development data. The best way to improve your model is to include more features.
You can include very specific individual features or you can also include other “groups” of features
like I’ve done with the letter occurrence features.

To add your features, you’ll mostly be modifying the examplesToData method, though feel free to
write other supporting methods, etc.

Be creative and analyze the mistakes that your model is making as well as the parameters learned.
If a particular set of features tends to have low weights overall, it may just be confusing the model.
The accuracy method has a boolean that can be set to true to print out the examples that are
misclassified. This may also prove useful.

You might also try playing with some of the smoothing parameters for the models, but don’t do this
until you’re pretty comfortable with your features. I've posted the documentation for the classifier
code at:

http://www.cs.pomona.edu/classes/cs159/lectures/ml_lab/documentation/

When we have about 10-15 minutes left of class, we’ll compare the performance of your classifiers
on the test set and talk about different features.

Training data size

If you have time spend 5 or 10 minutes exploring the performance of the classifiers for varying
amounts of training data. We saw in class that NB tends to perform better for small amounts of
data and MLR as we get more training data. Does that hold for us? Would varying the number of
features affect your analysis?

