CS159 - Assignment 7 (last onel!)

Due: Monday, April 17 at 5pm

WHOA! WE SHOULD GET INSIDE!

ITS orAY! LIGHTNING ONLY KILLS
ABOUT Y5 AMERICANS A YEAR, 50
THE CHANCES OF DYING ARE ONLY
ONE N 7000000, LETS GO ON!

%

THE ANNUAL DEATH RATE AMONG PEORLE
WHO KNOW THAT STATISTIC IS ONE IN SIX.

http://xkcd.com/795/

For our last (yay!) assignment, we will implement a multinomial Naive Bayes Classifier. You may,
and I would encourage you to, work in pairs on this assignment if you’d like. As always, read
through the entire document before starting.

Data

The goal of this assignment is to build a multinomial NB classifier that can determine the sentiment
of reviews, in this case, just positive and negative reviews. The starter:

http://www.cs.pomona.edu/classes/cs159/assignments/assign7-starter.zip

includes two datasets to play with:



e movies.data: This data set consists of approximately 14K reviews collected from
www.rateitall.com. The reviews come from a variety of domains including movies, music,
books, and politicians. The actual data has ratings from 1 to 5, but I have cleaned these
up and left only 1s and 5s, denoted those with a 5 score as “positive” and those with a 1 as
“negative”, resulting in a binary sentiment prediction task.

e simple.data: I've also provided a hand-made, smaller example to play with. You can use
this for testing your algorithm and I'll also be asking you to submit some results on this data
set.

Both data sets have one example per line of the form:

positive/negative[tab]ltext

The Model

The Multinomial Naive Bayes classifier models each class with a multinomial, which is a proba-
bility distribution over all of the words in the vocabulary (see the note below about vocabulary).
Specifically, for each class you need to learn two things:

— p(label): how likely this label is over the training data (note these will sum up to one over all
labels).

— p(wjllabel): how likely word wj is to occur in a given label/class. Note that this is a probability
distribution over all words in the vocabulary. For notational convenience, we often will write
6;, that is 6; = p(w;|label)

For this assignment, we will be learning two probability distributions, one for the positive
class and one for the negative.

Implementation Details

- Input

Create a script called nb-classify.sh that takes three parameters:
nb-classify.sh <training_data> <test_sentences> <lambda>

where <training_data> is a file formatted as described above with label and text, one per
line, <test_sentences> is a normal text file with one example/text per line (without a label)
and <lambda> is the lambda value to be used for smoothing.

- OQutput

The program should train a multinomial NB model on the training data using the A value
for smoothing and then print one line for each line in the <test_sentences> file with the
classification and the log-probability of that prediction:



positive/negative[tab]llog probability

(see below for why the log of the probability and not the actual probability)

Note: in the real world you would likely separate out the training and testing phases. During
the training phase, you would generate the counts and then store these (or the actual 6s to a
file) and then read this representation (rather than retraining) during classification. For our
purposes, though, we’ll keep things simple and train the model each time.

Preprocessing

The data sets we’ll be playing with have already been tokenized and lowercased: just split
the words based up on whitespace. This will include some funny “words” like periods, etc.,
but that’s fine; it will keep the answers consistent.

Underflow

When dealing with probabilities, you have to be careful about underflow. Like we’ve done
before, the most common solution is to do everything in log-space and then sum the log-
probs rather than multiplying probabilities. In our case, our general probability calculation
per label is:

p(z1, 22, ...y T, label) = p(label) H H;j
j=1

where z; is the number of times word j occurred in the text and 6; = p(wj|label) (see notes
about the model above). To avoid overflow, you should calculate the log-prob:

m
logygp(x1, z2, ..., Tm, label) = log,q p(label) + Z xjlog0;
j=1
Efficiency

Your program should be efficient both during training and classification. During training,
you should only make ideally one (or two in the worst case) passes over the data, aggregating
counts as you go. As always, you should pick an efficient data structure for this. (Hashtables
are our new best friend in this class!)

During classification, you should only have to iterate over the words that are in the particular
example you're trying to classify, not all possible words you saw during training.
Probability answers

Technically speaking, the probability of a particular example is:

m
p(1, 22, ..., Ty, label) = p(label)mi“ ;-:j
=175 j=5
where n = 377", x;. However, to keep things simple (and to avoid extra computation)

what you should be outputing along with the classification prediction is just the log-prob as
described above without the count/factorial component.



- Ties

If you happen to have a tie between positive and negative, choose positive.

- Vocabulary

The number of features in the model (m) will depend on the number of unique words that
you see during training. Smoothing will handle cases where you see a word in training in
one label, but not in the other (e.g. a word that occurs in a positive review, but not in a
negative review). However, during testing, you might also encounter words that you’ve never
seen before (in any of your training examples). There are many ways to handle this, but the
easiest is just to ignore these words. This is also intuitive, since if you’ve never seen a word
during training, it shouldn’t bias your model towards either of the labels.

Writeup

In addition to your script and the associated code, you should also submit a short writeup that
has your answers to the questions below. You don’t need to (and shouldn’t) submit any extra code
that you write to get these answers.

Put your names at the top of the writeup file.

On simple.data:

1. What is the output from your system trained on simple.data on the following two sentences
with A = 0:

i loved it
i thought i hated it but loved it

Include 1-2 sentences stating whether or not these seem reasonable.

2. Print out all of the probabilities for your model when you train on simple.data with A = 0,
specifically:

- p(negative) and p(positive)
- p(*|positive) and p(*|negative) — these are our multinomial distributions for each label,
which shoulbe be distributions over all words in the vocabulary

On movies.data:

3. What are the top 10 most predictive features for each label (positive and negative)? To
determine this, calculate:

p(w;|positive) /p(w;|negative)



using A = 0 and for all features that had occurrences in both labels, i.e. have non-zero proba-
bilities with A = 0. The largest values will be those most predictive for the positive label and
the smallest values those most predictive for the negative label. Include 1-2 sentences stating
whether or not these seem reasonable.

4. Show the output for two sentences in each label category (4 total) from your system after
training on the movie data. You should try and find one example each where it intuitively
makes the correct decision and one where it intuitively makes the incorrect decision.

Extra Credit

Evaluating the model (2 points)

Split the movies.data file into 80% train, 10% dev and 10% test and calculate:

1. The accuracy of your approach on the dev set for varied A. Accuracy is the proportion of
examples that the classifier got correct.

2. The accuracy of your approach on the test set for the same set of As

Bernoulli NB (4 points)

Implement the Bernoulli NB model. Compare it’s performance based on accuracy for the same
train/dev/test data to that of the multinomial NB model and include a short analysis of your
results.

When you’re done

When you’re all done, submit via the normal submission mechanism. Include all of your code and
your writeup.

If you worked with a partner, put both people’s last names on the submitted directory, but only
submit one copy.

If the naming of the files isn’t obvious about where various things are being done, please include a
README file explaining your organization.

Commenting and code style

Your code should be commented appropriately (though you don’t need to go overboard). The most
important things:



e Your name (or names) and the assignment number should be at the top of each file you
modify.

e Each class and method should have appropriate JavaDoc comments (doc strings if you do it
in Python).

e If anything is complicated, put a short note in there to help me out if there are any issues.
This is a non-trivial assignment and it can get complicated, which makes code style and comments

very important so that I can understand what you did. For this reason, you will lose points for
poorly commented or poorly organized code.

Grading

Part points
Correctness 30
Efficiency 5
Writeup 15
Comments/style 5

extra credit 6
total 55 4 6 extra




