1. Unigram probabilities:

	MLE prob
p(a)	6/12
p(b)	5/12
p(c)	1/12

2. The bigram probabilities:

	MLE prob
p(a a)	1/5
p(b a)	3/5
p(c a)	1/5
p(a b)	2/3
p(b b)	1/3
p(c b)	0
p(a c)	1/1
p(b c)	0
p(c c)	0

3. Interpolated bigram probabilities with $\lambda = 1$:

	MLE prob
p(a a)	2/8
p(b a)	4/8
p(c a)	2/8
p(a b)	3/6
p(b b)	2/6
p(c b)	1/6
p(a c)	2/4
p(b c)	1/4
p(c c)	1/4

4. Adding in <UNK>

<UNK> a <UNK> b a <UNK> a b b a b a

5. Updated unigram and bigram probabilities

	MLE prob
p(a)	5/12
p(b)	4/12
$p(\langle UNK \rangle)$	3/12

The bigram probabilities:

	MLE prob
p(a a)	0
p(b a)	2/4
$p(\langle UNK \rangle a)$	2/4
p(a b)	2/2
p(b b)	0
$p(\langle UNK \rangle b)$	0
p(a < UNK >)	2/3
p(b < UNK>)	1/3
$p(\langle UNK \rangle \langle UNK \rangle)$	0

- 6. Backoff model with D = 0.5:
 - a

 $reserved_{-mass}(a) = (2 * 0.5)/4 = 1/4$

Since there is only one unseen bigram, it will get all of the reserved mass (i.e. 1/4). If you wanted to do the entire calculation (e.g. for practice):

denominator = $1 - \sum_{x:count(ax)>0} p(x) = 1 - (p(b) + p(\langle UNK \rangle)) = 1 - (4/12 + 3/12) = 5/12$ $\alpha(a) = \frac{1/4}{5/12} = 12/20 = 3/5$ • b reserved_mass(b) = (1 * 0.5)/2 = 1/4

denominator = $1 - \sum_{x:count(bx)>0} p(x) = 1 - p(a) = 1 - 5/12 = 7/12$ (Note this is the same as $p(b) + p(\langle UNK \rangle)$, but for efficiency, since the number of words that do occur following a particular word is usually much, much smaller than the number that don't, programmatically we calculate it using the 1 minus formulation).

$$\alpha(b) = \frac{1/4}{7/12} = 12/28 = 3/7$$

• <UNK>

 $reserved_mass(<UNK>) = (2 * 0.5)/3 = 1/3$

Since there is only one unseen bigram, it will get all of the reserved mass. If you wanted to do the entire calculation (e.g. for practice): denominator = $1 - \sum_{x:count(<UNK>x)>0} p(x) = 1 - (p(a) + p(b)) = 1 - (5/12 + 4/12) = 3/12 = 1/4$ $\alpha(\langle UNK> \rangle) = \frac{1/3}{1/4} = 4/3$

Finally, now that we have the α s, we can calculate the smoothed bigram probabilities. For those that occurred, we simply discount the count. For those that did not occur, we calculate the probability as *alpha* times the unigram probability of the word.

	eqn	prob
p(a a)	3/5 * 5/12	2/8
p(b a)	(2-0.5)/4	3/8
$p(\langle UNK \rangle a)$	(2-0.5)/4	3/8
p(a b)	(2-0.5)/2	3/4
p(b b)	3/7 * 4/12	4/28
$p(\langle UNK \rangle b)$	3/7 * 3/12	3/28
p(a < UNK >)	(2-0.5)/3	3/6
p(b < UNK>)	(1-0.5)/3	1/6
$p(\langle UNK \rangle \langle UNK \rangle)$	4/3 * 3/12	2/6