

Admin

Assignment 3 out today: due next Wednesday

Quiz

Context free grammar $S \rightarrow NP VP$ left hand side right hand side (single symbol) (one or more symbols)

Formally...

G = (NT, T, P, S)

- NT: finite set of nonterminal symbols
- T: finite set of terminal symbols, NT and T are disjoint
- P: finite set of productions of the form $A \rightarrow \alpha, \ A \in NT \text{ and } \alpha \in (T \cup NT)^*$
- $S \in NT:$ start symbol

CFG: Example

Many possible CFGs for English, here is an example (fragment): $S \rightarrow NP VP$ $\rm VP \rightarrow \, V \, NP$ $NP \rightarrow DetP N \mid DetP AdjP N$ $\mathsf{AdjP} \to \mathsf{Adj} \mid \mathsf{Adv} \: \mathsf{AdjP}$ $N \rightarrow boy \mid girl$ $V \rightarrow sees \mid likes$ $\mathsf{Adj} \to \mathsf{big} \mid \mathsf{small}$ $\mathsf{Adv} \to \mathsf{very}$ $\text{DetP} \rightarrow \ \alpha \ | \ \text{the}$

Derivations in	a CFG
$\begin{array}{l} S \rightarrow NP \ VP \\ VP \rightarrow V \ NP \\ NP \rightarrow DetP \ N \ \mid DetP \ AdjP \ N \\ AdjP \rightarrow Adj \ \mid Adv \ AdjP \\ N \rightarrow boy \ \mid girl \\ V \rightarrow sees \ \mid likes \\ Adj \rightarrow big \ \mid small \\ Adv \rightarrow very \\ DetP \rightarrow a \ \mid the \end{array}$	S What can we do?

Derivations in a CFG

$\begin{array}{l} \textbf{S} \rightarrow \textbf{NP} \ \textbf{VP} \\ \textbf{VP} \rightarrow \ \textbf{V} \ \textbf{NP} \end{array}$

 $\begin{array}{l} \mathsf{NP} \rightarrow \mathsf{DetP} \; \mathsf{N} \; | \; \mathsf{DetP} \; \mathsf{AdjP} \; \mathsf{N} \\ \mathsf{AdjP} \rightarrow \; \mathsf{Adj} \; | \; \mathsf{Adv} \; \mathsf{AdjP} \end{array}$ $N \rightarrow boy | girl V \rightarrow sees | likes$ $\mathsf{Adj} \to \mathsf{big} \mid \mathsf{small}$ $\mathsf{Adv} \to \mathsf{very}$ $\mathsf{DetP} \to \ \mathsf{a} \ | \ \mathsf{the}$

S

Derivations in a CFG $\mathrm{S} \to \mathrm{NP} \; \mathrm{VP}$ $\rm VP \rightarrow ~V~NP$ $\mathsf{NP} \to \mathsf{DetP} \; \mathsf{N} \; | \; \mathsf{DetP} \; \mathsf{AdjP} \; \mathsf{N}$ NP VP $AdjP \rightarrow Adj \mid Adv AdjP$ $N \rightarrow boy | girl V \rightarrow sees | likes$ $Adj \rightarrow big \mid small Adv \rightarrow very$

 $\mathsf{DetP} \to \mathsf{a} \mid \mathsf{the}$

What can we do?

Derivations in a CFG

$\mathrm{S} \to \mathrm{NP} \; \mathrm{VP}$ $\rm VP \rightarrow ~V~NP$ $NP \rightarrow DetP N \mid DetP AdjP N$ $AdjP \rightarrow Adj \mid Adv AdjP$ $N \rightarrow boy | girl$ $V \rightarrow sees | likes$ $\mathsf{Adj} \to \mathsf{big} \mid \mathsf{small}$ $Adv \rightarrow very$ $\mathsf{DetP} \to \ \mathsf{a} \ | \ \mathsf{the}$

NP VP

Derivations in a CFG

 $\mathrm{S} \to \mathrm{NP} \; \mathrm{VP}$ $\rm VP \rightarrow ~V~\rm NP$ $NP \rightarrow DetP N \mid DetP AdjP N$ $AdjP \rightarrow Adj \mid Adv AdjP$ $N \rightarrow boy \mid girl$ $V \rightarrow sees \mid likes$ $Adj \rightarrow big \mid small Adv \rightarrow very$ $\mathsf{DetP} \to \mathsf{a} \mid \mathsf{the}$

DetP N VP

Derivations in a CFG

 $\mathrm{S} \to \mathrm{NP} \; \mathrm{VP}$ $\rm VP \rightarrow ~V~NP$ $\begin{array}{l} \mathsf{NP} \rightarrow \mathsf{DetP} \; \mathsf{N} \; | \; \mathsf{DetP} \; \mathsf{AdjP} \; \mathsf{N} \\ \mathsf{AdjP} \rightarrow \; \mathsf{Adj} \; | \; \mathsf{Adv} \; \mathsf{AdjP} \end{array}$ $N \rightarrow boy | girl V \rightarrow sees | likes$ $\mathsf{Adj} \to \mathsf{big} \mid \mathsf{small}$ $Adv \rightarrow very$ $DetP \rightarrow a \mid the$

DetP N VP

Derivations in a CFG

 $\mathrm{S} \to \mathrm{NP} \; \mathrm{VP}$ $\rm VP \rightarrow ~V~NP$ $NP \rightarrow DetP N \mid DetP AdjP N$ $AdjP \rightarrow Adj \mid Adv AdjP$ $N \rightarrow boy | girl$ $V \rightarrow sees | likes$ $\mathsf{Adj} \to \mathsf{big} \mid \mathsf{small}$ $Adv \rightarrow very$ $\mathsf{DetP} \to \mathsf{a} \mid \mathsf{the}$

the boy VP

Derivations in a CFG

 $\begin{array}{ll} S \rightarrow NP \; VP \\ VP \rightarrow \; V \; NP \\ NP \rightarrow DetP \; N \; \mid \; DetP \; AdjP \; N \\ AdjP \rightarrow \; Adj \; \mid \; Adv \; AdjP \\ N \rightarrow \; boy \; \mid girl \\ V \rightarrow \; sees \; \mid \; likes \\ Adj \rightarrow \; big \; \mid \; small \\ Adv \rightarrow \; very \\ DetP \rightarrow \; \alpha \; \mid \; the \end{array} \qquad the \; boy \; likes \\ \end{array}$

Derivations in a CFG

 $\begin{array}{l} S \rightarrow \mathsf{NP} \ \mathsf{VP} \\ \mathsf{VP} \rightarrow \ \mathsf{V} \ \mathsf{NP} \\ \mathsf{NP} \rightarrow \mathsf{DetP} \ \mathsf{N} \ | \ \mathsf{DetP} \ \mathsf{AdjP} \\ \mathsf{AdjP} \rightarrow \ \mathsf{Adj} \ | \ \mathsf{Adv} \ \mathsf{AdjP} \\ \mathsf{N} \rightarrow \ \mathsf{boy} \ | \ \mathsf{girl} \\ \mathsf{V} \rightarrow \ \mathsf{sees} \ | \ \mathsf{likes} \\ \mathsf{Adj} \rightarrow \ \mathsf{big} \ | \ \mathsf{small} \\ \mathsf{Adv} \rightarrow \ \mathsf{very} \\ \mathsf{DetP} \rightarrow \ \mathsf{a} \ | \ \mathsf{the} \end{array}$

the boy likes a girl

Parsing

Parsing is the field of NLP interested in automatically determining the syntactic structure of a sentence

Parsing can be thought of as determining what sentences are "valid" English sentences

As a byproduct, we often can get the structure

Parsing

Given a CFG and a sentence, determine the possible parse tree(s)

	l eat sushi with tuna
S -> NP VP	
NP -> N	
NP -> PRP	What parse trees are possible for this
NP -> N PP	
VP -> V NP	sentence?
VP -> V NP PP	
PP -> IN N	
PRP -> 1	How did you do it?
V -> eat	· · · · · / · · · · · ·
N -> sushi	
N -> tuna	What if the grammar is much larger?
IN -> with	what it me grammar is much largery

A Simple PCFG					
Probabilities!					
$\begin{array}{c} VP & \rightarrow \\ VP & \rightarrow \\ PP & \rightarrow \\ P & \rightarrow \end{array}$	 NP VP V NP VP PP P NP with saw 	1.0 0.7 0.3 1.0 1.0 1.0	$\begin{array}{ccc} NP & \rightarrow \\ NP & \rightarrow \\ NP & \rightarrow \\ NP & \rightarrow \end{array}$	saw	0.4 0.1 0.18 0.04 0.18 0.1

Parsing problems

Pick a model

🛯 e.g. CFG, PCFG, ...

Train (or learn) a model

- What CFG/PCFG rules should I use?
- Parameters (e.g. PCFG probabilities)?
- What kind of data do we have?

Parsing

Determine the parse tree(s) given a sentence

Normal Forms	(
There are weakly equivalent normal forms (Chomsky Normal Form, Greibach Normal Form)	
A CFG is in Chomsky Normal Form (CNF) if all productions are of one of two forms: $\Box A \rightarrow B C$ with A, B, C nonterminals $\Box A \rightarrow a$, with A a nonterminal and a terminal	
Every CFG has a weakly equivalent CFG in CNF	

CNF Grammar	
S -> VP VP -> VB NP VP -> VB NP PP NP -> DT NN NP -> NN NP -> NP PP PP -> NN NP DT -> the IN -> with VB -> trust NN -> trust NN -> trust	S -> VP VP -> VB NP VP -> VP2 PP VP2 -> VB NP NP -> DT NN NP -> NP PP PP -> NN NP DT -> the IN -> with VB -> film VB -> film NN -> film NN -> trust

	G	rammar Conversion	
Original Grammar		Chomsky Normal Form	
$S \rightarrow NP VP$	0.8	$S \rightarrow NP VP$	0.8
$S \rightarrow Aux NP VP$	0.1	$S \rightarrow X1 VP$	0.1
		$X1 \rightarrow Aux NP$	1.0
$S \to VP$	0.1	$\begin{array}{c} S \rightarrow book \mid include \mid prefer \\ 0.01 0.004 0.006 \end{array}$	
		$S \rightarrow Verb NP$	0.05
		$S \rightarrow VP PP$	0.03
$NP \rightarrow Pronoun$	0.2	$NP \rightarrow I he she me 0.1 0.02 0.02 0.06$	
$NP \rightarrow Proper-Noun$	0.2	$NP \rightarrow Houston \mid NWA \\ 0.16 \qquad .04$	
$NP \rightarrow Det Nominal$	0.6	$NP \rightarrow Det Nominal$	0.6
Nominal \rightarrow Noun	0.3	Nominal → book flight meal money 0.03 0.15 0.06 0.06	
Nominal -> Nominal Noun	0.2	Nominal → Nominal Noun	0.2
Nominal → Nominal PP	0.5	Nominal → Nominal PP	0.5
$VP \to Verb$	0.2	$VP \rightarrow book \mid include \mid prefer 0.1 0.04 0.06$	
$VP \rightarrow Verb NP$	0.5	$VP \rightarrow Verb NP$	0.5
$VP \rightarrow VP PP$	0.3	$VP \rightarrow VP PP$	0.3
$PP \rightarrow Prep NP$	1.0	$PP \rightarrow Prep NP$	1.0

