

Admin

Assignment 3 out today: due next Wednesday

Quiz

Context free grammar

Formally...
$G=(N T, T, P, S)$

NT: finite set of nonterminal symbols

T: finite set of terminal symbols, NT and T are disioint
left hand side right hand side
(single symbol) (one or more symbols)
P : finite set of productions of the form
$A \rightarrow \alpha, A \in N T$ and $\alpha \in(T \cup N T)^{*}$
$S \in N T$: start symbol
CFG: Example
Many possible CFGs for English, here is an example
(fragment):
$\mathrm{S} \rightarrow \mathrm{NP}$ VP
$\mathrm{VP} \rightarrow \mathrm{VNP}$
$\mathrm{NP} \rightarrow$ DetP $\mathrm{N} \mid \operatorname{DetP~AdiP~} \mathrm{N}$
AdiP \rightarrow Adi | Adv AdiP
$\mathrm{N} \rightarrow$ boy | girl
$\mathrm{V} \rightarrow$ sees | likes
Adi \rightarrow big | small
Adv \rightarrow very
DetP \rightarrow a | the

Derivations in a CFG	
$\begin{aligned} & S \rightarrow \text { NP VP } \\ & \mathrm{VP} \rightarrow \mathrm{VNP} \\ & \mathrm{NP} \rightarrow \text { DetP } N \mid \text { DetP AdjP N } \\ & \text { AdjP } \rightarrow \text { Adi \| Adv AdiP } \\ & \mathrm{N} \rightarrow \text { boy \| girl } \\ & \mathrm{V} \rightarrow \text { sees \| likes } \\ & \text { Adi } \rightarrow \text { big \| small } \\ & \text { Adv } \rightarrow \text { very } \\ & \text { DetP } \rightarrow \text { a \| the } \end{aligned}$	\mathbf{S} What can we do?

Derivations in	G
$\mathrm{S} \rightarrow \mathrm{NP}$ VP	
$\mathrm{VP} \rightarrow \mathrm{VNP}$	
$N P \rightarrow \operatorname{DetP} N \mid \operatorname{DetP} \operatorname{AdjP} N$ AdjP \rightarrow Adi \| Adv AdjP	NP VP
$N \rightarrow$ boy \| girl	
$\vee \rightarrow$ sees \| likes	
Adj \rightarrow big \| small Adv \rightarrow very	What can we do?
$\operatorname{DetP} \rightarrow \mathrm{a} \mid$ the	

Derivations in a CFG	
$\begin{aligned} & \mathrm{S} \rightarrow \mathrm{NP} \text { VP } \\ & \mathrm{VP} \rightarrow \mathrm{VNP} \\ & \mathrm{NP} \rightarrow \text { DetP } \mathrm{N} \mid \operatorname{DetP} \text { AdiP } N \\ & \text { AdiP } \rightarrow \text { Adj \| Adv AdiP } \\ & \mathrm{N} \rightarrow \text { boy \| girl } \\ & \mathrm{V} \rightarrow \text { sees \| likes } \\ & \text { Adi } \rightarrow \text { big \| small } \\ & \text { Adv } \rightarrow \text { very } \\ & \text { DetP } \rightarrow \text { a } \mid \text { the } \end{aligned}$	DetP N VP

Derivations in a CFG	
$\begin{aligned} & S \rightarrow \text { NP VP } \\ & \mathrm{VP} \rightarrow \text { V NP } \\ & \mathrm{NP} \rightarrow \text { DetP } \mathrm{N} \mid \operatorname{DetP} \text { Adip } N \\ & \text { AdiP } \rightarrow \text { Adj \| Adv AdiP } \\ & \mathrm{N} \rightarrow \text { boy \| girl } \\ & \mathrm{V} \rightarrow \text { sees \| likes } \\ & \text { Adi } \rightarrow \text { big \| small } \\ & \text { Adv } \rightarrow \text { very } \\ & \text { DetP } \rightarrow \text { a } \mid \text { the } \end{aligned}$	the boy likes a girl

Derivations in a CFG; Order of Derivation Irrelevant
$S \rightarrow N P V P$ $\mathrm{VP} \rightarrow \mathrm{VNP}$ NP \rightarrow DetP N \| DetP AdjP N AdjP \rightarrow Adj I Adv AdjP $N \rightarrow$ boy \| girl $\mathrm{V} \rightarrow$ sees \| likes Adj \rightarrow big \mid small Adv \rightarrow very $\operatorname{Det} P \rightarrow a \mid$ the the boy likes a girl

String rewriting system: we derive a string

Parsing
Parsing is the field of NLP interested in
automatically determining the syntactic structure of
a sentence
Parsing can be thought of as determining what
sentences are "valid" English sentences
As a byproduct, we often can get the structure

Parsing	
Given a CFG and a sentence, determine the possible parse tree(s)	
	\| eat sushi with tuna
$N P->N$ NP $->$ PRP NP -> N PP What parse trees are possible for this VP ->VNP sentence?	
$\begin{aligned} & \text { VP ->vNP PP } \\ & \text { PP }->\operatorname{INN} \end{aligned}$	
PRP $\rightarrow 1$	How did you do it?
V $\begin{aligned} & \mathrm{V} \rightarrow \text { eat } \\ & \mathrm{N} \rightarrow \text { sushi } \\ & \mathrm{N}\end{aligned}$	
	What if the grammar is much larger?

Parsing
Parsing ambiguity

Parsing problems
Pick a model
\square e.g. CFG, PCFG, ...
Train (or learn) a model
$\quad \square$ What CFG/PCFG rules should I use?
\quad Parameters (e.g. PCFG probabilities)?
\square What kind of data do we have?
Parsing
\square Determine the parse tree(s) given a sentence

PCFG: Training

If we have example parsed sentences, how can we learn a set of PCFGs?

Estimating PCFG Probabilities

We can extract the rules from the trees

$\mathrm{S} \rightarrow \mathrm{NP}$ VP	S	$\rightarrow \mathrm{NP}$ VP	1.0
$\mathrm{NP} \rightarrow \mathrm{PRP}$	VP	$\rightarrow \mathrm{V} \mathrm{NP}$	0.7
$\mathrm{PRP} \rightarrow \mathrm{I}$	$\mathrm{VP} \rightarrow \mathrm{VP}$ PP	0.3	
$\mathrm{VP} \rightarrow \mathrm{VNP}$	$\mathrm{PP} \rightarrow \mathrm{P}$ NP	1.0	
$\mathrm{~V} \rightarrow$ eat	P	\rightarrow with	1.0
$\mathrm{NP} \rightarrow$ N PP	V	\rightarrow saw	1.0

How do we go from the extracted CFG rules to PCFG rules?

Estimating PCFG Probabilities
Extract the rules from the trees
Calculate the probabilities using MLE
$\alpha \rightarrow \beta \quad p(\alpha \rightarrow \beta \mid \alpha)$
$P(\alpha \rightarrow \beta \mid \alpha)=\frac{\operatorname{count}(\alpha \rightarrow \beta)}{\sum_{\gamma}^{\operatorname{count}(\alpha \rightarrow \gamma)}}=\frac{\operatorname{count}(\alpha \rightarrow \beta)}{\operatorname{count}(\alpha)}$

Grammar Equivalence
What does it mean for two grammars to be equal?

Estimating PCFG Probabilities

Occurrences

$\mathrm{S} \rightarrow \mathrm{NP}$ VP 10
$S \rightarrow V N P \quad 3$
$\mathrm{S} \rightarrow \mathrm{VPPP} \quad 2 \quad \mathrm{P}(\mathrm{S} \rightarrow \vee \mathrm{NP})=$?
$N P \rightarrow N \quad 7$
$N P \rightarrow N P P \quad 3$
$N P \rightarrow$ DT N 6
$P(S \rightarrow V N P)=P(S \rightarrow V N P \mid S)=\frac{\operatorname{count}(S \rightarrow V N P)}{\operatorname{count}(S)}=\frac{3}{15}$

Grammar Equivalence
Weak equivalence: grammars generate the same set of strings Grammar 1: NP $\rightarrow \operatorname{DetP~} \mathrm{N}$ and $\operatorname{DetP} \rightarrow \mathrm{a} \mid$ the Grammar 2: $\mathrm{NP} \rightarrow \mathrm{aN} \mid$ the N
Strong equivalence: grammars have the same set of derivation trees With CFGs, possible only with useless rules Grammar 2: $\mathrm{NP} \rightarrow a \mathrm{~N} \mid$ the N Grammar 3: NP \rightarrow a $N \mid$ the $N, \operatorname{DetP} \rightarrow$ many

Normal Forms

There are weakly equivalent normal forms (Chomsky
Normal Form, Greibach Normal Form)

A CFG is in Chomsky Normal Form (CNF) if all productions are of one of two forms:

$$
\square A \rightarrow B C \text { with } A, B, C \text { nonterminals }
$$

$\square A \rightarrow a$, with A a nonterminal and a a terminal

Every CFG has a weakly equivalent CFG in CNF

CNF Grammar	
$\begin{aligned} & \text { S -> VP } \\ & \text { VP -> VB NP } \\ & \text { VP -> VB NP PP } \\ & \text { NP -> DT NN } \\ & \text { NP -> NN } \\ & \text { NP -> NP PP } \\ & \text { PP -> IN NP } \\ & \text { DT -> the } \\ & \text { IN -> with } \\ & \text { VB -> film } \\ & \text { VB }->\text { trust } \\ & \text { NN -> man } \\ & \text { NN -> film } \\ & \text { NN -> trust } \end{aligned}$	$\begin{aligned} & \text { S -> VP } \\ & \text { VP -> VB NP } \\ & \text { VP -> VP2 PP } \\ & \text { VP2 -> VB NP } \\ & \text { NP -> DT NN } \\ & \text { NP -> NN } \\ & \text { NP -> NP PP } \\ & \text { PP -> IN NP } \\ & \text { DT -> the } \\ & \text { IN -> with } \\ & \text { VB -> film } \\ & \text { VB -> trust } \\ & \text { NN -> man } \\ & \text { NN -> film } \\ & \text { NN -> trust } \end{aligned}$

Grammar questions

Can we determine if a sentence is grammatical?

Given a sentence, can we determine the
syntactic structure?

Next time: parsing

Can we determine how likely a sentence is to be grammatical? to be an English sentence?

Can we generate candidate, grammatical sentences?

