

## Admin

## Assignment 2

Quiz \#1
$\square$ Thursday any time

- I'll be available from 12:30-1:15pm on our class zoom session if you'd like to ask questions
- "Normal" class will start at $1: 15 \mathrm{pm}$
$\square$ Open book and open notes


## Quiz \#1 material

$\mathrm{T} / \mathrm{F}$, short answer, pencil and paper work (no coding)
zipf's law
regular expressions
probability basics
language modeling
MLE estimation/estimating from a corpus
development set
perplexity
determining vocabulary
smoothing techniques
add 1
interpolation
ackoff
absolute discounting

Simplified View of Linguistics


## Morphology

What is morphology?
$\square$ study of the internal structure of words $\square$ morph-ology word-s jump-ing

Why might this be useful for NLP?
$\square$ generalization (runs, running, runner are related)

- additional information (it's plural, past tense, etc)
- allows us to handle words we've never seen before - smoothing?


## New words

AP newswire stories from Feb 1988 - Dec 30, 1988
$\square 300 \mathrm{~K}$ unique words

New words seen on Dec 31
$\square$ compounds: prenatal-care, publicly-funded, channelswitching, ...

- New words:
- dumbbells, groveled, fuzzier, oxidized, ex-presidency, puppetry, boulderlike, over-emphasized, antiprejudice

| Morpheme examples |
| :--- |
| infix |
| $\square$-fucking- (cinder-fucking-rella) |
| $\quad$ more common in other languages |
| circumfix |
| $\square$ doesn't really happen in English |
| $\square$ a- -ing |
| $\quad$ a-running |
| $\square$ a-iumping |

Stemming (baby lemmatization)

## Agglutinative: Finnish

| talo 'the-house' | kaup-pa 'the-shop' <br> talo-ni 'my house' |
| :--- | :---: |
| kaup-pa-ni 'my shop' |  |
| talo-ssa 'in the-house' | kaup-a-ssa 'in the-shop' |
| talo-ssa-ni 'in my house' | kaup-a-ssa-ni 'in my shop' |
| talo-i-ssa 'in the-houses' | kaup-o-i-ssa 'in the-shops' |
| talo-i-ssa-ni 'in my houses' | kaup-o-i-ssa-ni 'in my shops' |

Stemming example
This is a poorly constructed example using the Porter stemmer.
This is a poorli construct example us the Porter stemmer.
hhtrps://text-processing.com/demo/stem/
(or you can download versions online)

## Porter's algorithm (1980)

Most common algorithm for stemming English
$\square$ Results suggest it is at least as good as other stemming options

Multiple sequential phases of reductions using rules, e.g.
$\square$ sses $\rightarrow$ ss
$\square$ ies $\rightarrow$ i
$\square$ ational $\rightarrow$ ate
$\square$ tional $\rightarrow$ tion
http://tartarus.org/~martin/PorterStemmer/

## What is Syntax?

Study of the structure of language

Examine the rules of how words interact and go together

Rules governing grammaticality

I will give you one perspective
$\square$ no single correct theory of syntax
still an active field of research in linguistics
$\square$ we will often use it as a tool/stepping stone for other applications

Structure in language

The man $\qquad$ all the way home.

what are some examples of words that can/can't go here?

Structure in language

The man $\qquad$ all the way home.

why can't some words go here?

| Structure in language |
| :--- |
| The man flew all the way home. |
| Language is bound by a set of rules |
| It's not clear exactly the form of these rules, however, |
| people can generally recognize them |
| This is syntax! |



## Syntax != Semantics

Colorless green ideas sleep furiously.

Syntax is only concerned with how words interact from a grammatical standpoint, not semantically (i.e. meaning)

Parts of speech

Parts of speech are constructed by grouping words that function similarly:

- with respect to the words that can occur nearby
- and by their morphological properties

The man $\qquad$ all the way home.

| ran | integrated | washed |
| :--- | :--- | :--- |
| forgave | programmed | warned |
| ate | shot | walked |
| drove | shouted | spoke |
| drank | sat | succeeded |
| hid | slept | survived |
| learned | understood | read |
| hurt | voted | recorded |

## Parts of speech

What are the English parts of speech?

- 8 parts of speech?
- Noun (person, place or thing)
- Verb (actions and processes)

Adjective (modify nouns)

- Adverb (modify verbs)
- Preposition (on, in, by, to, with)
- Determiners ( $a$, an, the, what, which, that)
- Conjunctions (and, but, or)
- Particle (off, up)


## English parts of speech

Brown corpus: 87 POS tags

Penn Treebank: $\sim 45$ POS tags

- Derived from the Brown tagset
- Most common in NLP
- Many of the examples we'll show use this one

British National Corpus (C5 tagset): 61 tags

C6 tagset: 148

C7 tagset: 146

C8 tagset: 171

Tagsets

Brown tagset:
https://en.wikipedia.org/wiki/Brown_Corpus

C8 tagset:
http://ucrel.|ancs.ac.uk/claws8tags.pdf

## English Parts of Speech

Noun (person, place or thing)

- Singular (NN): dog, fork
- Plural (NNS): dogs, forks

Proper (NNP, NNPS): John, Springfields

- Personal pronoun (PRP): I, you, he, she, they, it
- Wh-pronoun (WP): who, what

Verb (actions and processes)

- Base, infinitive (VB): eat
- Past tense (VBD): ate
- Gerund (VBG): eating
- Past participle (VBN): eaten

Non $3^{\text {rd }}$ person singular present tense (VBP): eat

- $3^{\text {rd }}$ person singular present tense: (VBZ): eats
- Modal (MD): should, can

To (TO): to (to eat)

## English Parts of Speech (cont.)

```
Adjective (modify nouns)
    \square Basic (J): red, tall
    Comparative (JJR): redder, taller
    \square Superlative (JJS): reddest, tallest
```

Adverb (modify verbs)
Basic (RB): quickly
- Comparative (RBR): quicker
- Superlative (RBS): quickest
Preposition (IN): on, in, by, to, with

## Determiner:

Basic (DT) a, an, the
WH-determiner (WDT): which, that
Coordinating Conjunction (CC): and, but, or,
Particle (RP): off (took off), up (put up)


## Closed vs. Open Class

Closed class categories are composed of a small, fixed set of grammatical function words for a given language.

- Pronouns, Prepositions, Modals, Determiners, Particles, Conjunctions

Open class categories have large number of words and new ones are easily invented.

- Nouns (Googler, futon, iPad), Verbs (Google, futoning), Adjectives (geeky), Abverb (chompingly)



## Part of speech tagging

Annotate each word in a sentence with a part-ofspeech marker

Lowest level of syntactic analysis

John saw the saw and decided to take it to the table.
NNP VBD DT NN CC VBD TO VB PRP IN DT NN

| Ambiguity in POS Tagging |
| :---: |
| I like candy. |
| VBP <br> (verb, non-3rd person, singular, present) |
| Time flies like an arrow. |
| IN <br> (preposition) |
| Does "like" play the same role <br> (POS) in these sentences? |

## Ambiguity in POS tagging

Like most language components, the challenge with POS tagging is ambiguity

## Brown corpus analysis

- $11.5 \%$ of word types are ambiguous (this sounds promising!), but...
- $40 \%$ of word appearances are ambiguous
$\square$ Unfortunately, the ambiguous words tend to be the more frequently used words


## Ambiguity in POS Tagging

I bought it at the shop around the corner.

## IN

(preposition)
I never got around to getting the car.
RP
(particle... on, off)
The cost of a new Prius is around $\$ 25 \mathrm{~K}$.

## RB

(adverb)
Does "around" play the same role (POS) in these sentences?

## How hard is it?

If I told you had a POS tagger that achieved 90\% accuracy would you be impressed?
$\square$ Shouldn't be... just picking the most frequent POS for a word gets you this

What about a POS tagger that achieves 93.7\%?
$\square$ Still probably shouldn't be... only need to add a basic module for handling unknown words

What about a POS tagger that achieves 100\%?
$\square$ Should be suspicious... humans only achieve $\sim 97 \%$
$\square$ Probably overfitting (or cheating!)

## POS Tagging Approaches

```
Rule-Based: Human crafted rules based on lexical and other
linguistic knowledge
Learning-Based: Trained on human annotated corpora like the Penn
Treebank
- Statistical models: Hidden Markov Model (HMM), Maximum Entropy Markov Model (MEMM), Conditional Random Field (CRF), log-linear
Rule learning: Transformation Based Learning (TBL)
The book discusses some of the more common approaches
Many publicly available:
(list 15 different ones mostly publicly available!)
a http://www.coli.uni-saarland.de/~thorsten/tnt/
```

| Constituency |  |
| :---: | :---: |
| likes to eat candy. |  |
| nouns | determiner nouns |
| Dave | The man |
| Professor Kauchak | The boy |
| Dr. Suess | The cat |
| pronouns | determiner nouns + |
|  | The man that I saw |
| He She | The boy with the blue pants |
| They |  |

## Constituency

Words in languages tend to form into functional groups (parts of speech)

Groups of words (aka phrases) can also be grouped into functional groups

- often some relation to parts of speech
$\square$ though, more complex interactions

These phrase groups are called constituents



## Syntactic structure

## A number of related problems:

$\square$ Given a sentence, can we determine the syntactic structure?
$\square$ Can we determine if a sentence is grammatical?
$\square$ Can we determine how likely a sentence is to be grammatical? to be an English sentence?

- Can we generate candidate, grammatical sentences?


## Syntactic structure

(S (NP (NP (DT the) (NN man)) (PP (IN in) (NP (DT the) (NN hat))) (VP (VBD ran) (PP (TO to (NP (DT the) (NN park))))))
(S
(NP (DT the) (NN man))
(PP (IN in)
(NP (DT the) (NN hat)))
VP (VBD ran)
(PP (TO to)
(NP (DT the) (NN park)))))


## Grammars

Grammar is a set of structural rules that govern the composition of sentences, phrases and words

Lots of different kinds of grammars:
$\square$ regular
$\square$ context-free

- context-sensitive
$\square$ recursively enumerable
$\square$ transformation grammars



## Context free grammar

How many people have heard of them?

Look like:

$$
S \rightarrow N P V P
$$

left hand side right hand side (single symbol) (one or more symbols)

Formally...
$G=(N T, T, P, S)$

NT: finite set of nonterminal symbols

T: finite set of terminal symbols, NT and T are disjoint

P: finite set of productions of the form
$A \rightarrow \alpha, A \in N T$ and $\alpha \in(T \cup N T)^{*}$
$S \in N T$ : start symbol

## CFG: Example

## Many possible CFGs for English, here is an example (fragment):

$S \rightarrow N P V P$
$\mathrm{VP} \rightarrow \mathrm{VNP}$
$N P \rightarrow \operatorname{DetP} N \mid \operatorname{DetP} \operatorname{AdjP} N$
AdjP $\rightarrow$ Adj \| Adv AdjP
$N \rightarrow$ boy | girl
$V \rightarrow$ sees \| likes
Adj $\rightarrow$ big $\mid$ small
Adv $\rightarrow$ very
$\operatorname{DetP} \rightarrow \mathrm{a} \mid$ the

## CFG: Example

Many possible CFGs for English, here is an example (fragment):
$S \rightarrow$ NP VP $\quad N T:\{S, N P, V P, \operatorname{DetP}, N$, AdjP, Adi, Adv $\}$
$\mathrm{VP} \rightarrow V N P$
$\mathrm{NP} \rightarrow \operatorname{DetP} \mathrm{N} \mid \operatorname{DetP} \operatorname{AdjP} \mathrm{N}$
T: \{boy, girl, sees, likes, big, small, very, $a$, the $\}$
AdjP $\rightarrow$ Adj $\mid$ Adv AdjP
$\mathrm{N} \rightarrow$ boy \| girl

$\vee \rightarrow$ sees \| likes
Adi $\rightarrow$ big $\mid$ small $\quad \mathrm{S}: S$
Adv $\rightarrow$ very
$\operatorname{DetP} \rightarrow \mathrm{a} \mid$ the
Often just specify the production rules

## Grammar questions

Can we determine if a sentence is grammatical?
$\square$ Is it accepted/recognized by the grammar

- Applying rules right to left, do we get the start symbol?

Given a sentence, can we determine the syntactic structure? - Keep track of the rules applied...

Can we determine how likely a sentence is to be grammatical? to be an English sentence?

- Not yet... no notion of "likelihood" (probability)

Can we generate candidate, grammatical sentences?

- Start from the start symbol, randomly pick rules that apply (i.e. left hand side matches)

Which of these can we answer with
a CFG? How?

