

Admin

Lab next class

Same time, but will be an interactive session

Take home ideas: Key idea of smoothing is to redistribute the probability to handle less seen (or never seen) events Still must always maintain a true probability distribution Lots of ways of smoothing data Should take into account characteristics of your data!

n-gram language modeling assumes we have a fixed vocabulary why? Probability distributions are over finite events! What happens when we encounter a word not in our vocabulary (Out Of Vocabulary)? If we don't do anything, prob = 0 (or it's not defined) Smoothing doesn't really help us with this!

Vocabulary

No matter how you chose your vocabulary, you're still going to have out of vocabulary (OOV) words

How can we deal with this?

- □ Ignore words we've never seen before
 - Somewhat unsatisfying, though can work depending on the application
 - Probability is then dependent on how many in vocabulary words are seen in a sentence/text
- Use a special symbol for OOV words and estimate the probability of out of vocabulary

Out of vocabulary

Add an extra word in your vocabulary to denote OOV (<OOV>, <UNK>)

Replace all words in your training corpus not in the vocabulary with < UNK>

- □ You'll get bigrams, trigrams, etc with <UNK>
 - p(<UNK> | "I am")
- p(fast | "I <UNK>")

During testing, similarly replace all OOV with <UNK>

Choosing a vocabulary

A common approach (and the one we'll use for the assignment):

- Replace the first occurrence of each word by <UNK> in a data set
- Estimate probabilities normally

Vocabulary then is all words that occurred two or more times

This also discounts all word counts by 1 and gives that probability mass to <UNK>

Storing the table

How are we storing this table? Should we store all entries?

see the abacus	1	1/3	1.01	1.01/203
see the abbot	0	0/3	0.01	0.01/203
see the abduct	0	0/3	0.01	0.01/203
see the above	2	2/3	2.01	2.01/203
see the Abram	0	0/3	0.01	0.01/203
			0.01	0.01/203
see the zygote	0	0/3	0.01	0.01/203
Total	3	3/3	203	

Storing the table Hashtable (e.g. HashMap) fast retrieval fairly good memory usage Only store those entries of things we've seen for example, we don't store |V|3 trigrams

□ Store a hashtable of hashtables (I'm recommending this)

■ Store one hashtable with bigrams as keys

For trigrams we can:

Problems with frequency based smoothing

The following bigrams have never been seen:

p(X | San) p(X | ate)

Which would add-lambda pick as most likely?

Which would you pick?

Witten-Bell Discounting

Some words are more likely to be followed by new words

Diego Francisco San Luis Jose Marcos food
apples
bananas
ate hamburgers
a lot
for two
grapes
...

Witten-Bell Discounting

Probability mass is shifted around, depending on the context of words

If $P(w_i \mid w_{i-1},...,w_{i-m}) = 0$, then the smoothed probability $P_{WB}(w_i \mid w_{i-1},...,w_{i-m})$ is higher if the sequence $w_{i-1},...,w_{i-m}$ occurs with many different words w_k

Problems with frequency based smoothing

The following trigrams have never been seen:

p(car \mid see the) p(zygote \mid see the)

p(cumquat | see the)

Which would add-lambda pick as most likely? Witten-Bell?

Which would you pick?

Better smoothing approaches

Utilize information in lower-order models

Interpolation

□ Combine probabilities of lower-order models in some linear combination

Backoff

$$P(z \mid xy) = \begin{cases} \frac{C'(xyz)}{C(xy)} & \text{if } C(xyz) > k\\ \frac{\alpha(xy)P(z \mid y)}{\alpha(xy)} & \text{otherwise} \end{cases}$$

- Often k = 0 (or 1)
- □ Combine the probabilities by "backing off" to lower models only when we don't have enough information

Smoothing: simple interpolation

$$P(z \mid xy) \approx \lambda \frac{C(xyz)}{C(xy)} + \mu \frac{C(yz)}{C(y)} + (1 - \lambda - \mu) \frac{C(z)}{C(\bullet)}$$

Trigram is very context specific, very noisy

Unigram is context-independent, smooth

Interpolate Trigram, Bigram, Unigram for best combination

How should we determine λ and μ ?

Smoothing: finding parameter values

Just like we talked about before, split training data into training and development

Try lots of different values for $\lambda,\,\mu$ on heldout data, pick best

Two approaches for finding these efficiently

- EM (expectation maximization)
- "Powell search" see Numerical Recipes in C

Backoff models: absolute discounting

$$\begin{split} P_{absolute}(z \mid xy) = \\ \begin{cases} \frac{C(xyz) - D}{C(xy)} & \text{if } C(xyz) > 0 \\ \alpha(xy)P_{absolute}(z \mid y) & \text{otherwise} \end{cases} \end{split}$$

Subtract some absolute number from each of the counts (e.g. 0.75)

- How will this affect rare words?
- How will this affect common words?

Backoff models: absolute discounting

```
\begin{split} P_{absolute}(z \mid xy) &= \\ & \begin{cases} \frac{C(xyz) - D}{C(xy)} & \text{if } C(xyz) > 0 \\ \alpha(xy)P_{absolute}(z \mid y) & \text{otherwise} \end{cases} \end{split}
```

Subtract some absolute number from each of the counts (e.g. 0.75)

- □ will have a large effect on low counts (rare words)
- $\ \square$ will have a small effect on large counts (common words)

```
Backoff models: absolute discounting

P_{absolute}(z \mid xy) = \begin{cases} \frac{C(xyz) - D}{C(xy)} & \text{if } C(xyz) > 0\\ \alpha(xy)P_{absolute}(z \mid y) & \text{otherwise} \end{cases}

What is \alpha(xy)?
```


Backoff models: absolute discounting see the dog 1 p(cat | see the) = ? see the banana 4 see the man 1 $\frac{2-D}{10} = \frac{2-0.75}{10} = .125$ see the car 1 $P_{absolute}(z \mid xy) = \begin{cases} \frac{C(xyz) - D}{C(xy)} & \text{if } C(xyz) > 0 \\ \alpha(xy) P_{absolute}(z \mid y) & \text{otherwise} \end{cases}$

```
Backoff models: absolute discounting
  see the dog
                                 p( puppy | see the ) = ?
  see the cat
  see the banana
                                 \alpha(see the) = ?
  see the man
  see the woman
                                 How much probability mass did
  see the car
                                 we reserve/discount for the
                                 bigram model?
_{le}(z \mid xy) =
\int C(xyz) - D
              if C(xyz) > 0
C(xy)

\alpha(xy)P_{abo}
        ute(z|y) otherwise
```

```
Backoff models: absolute discounting
   see the dog
                                     p( puppy | see the ) = ?
   see the cat
   see the banana
                                     \alpha(see the) = ?
   see the man
   see the woman
                                    \# of types starting with "see the" * D
   see the car
                                           count("see the")
                                   For each of the unique trigrams, we
                                   subtracted D/count("see the") from the
                                    probability distribution
_{tr}(z \mid xy) =
\int C(xyz) - D
                if\ C(xyz)>0
\begin{cases} C(xy) & y \in C(xyz) \\ \alpha(xy)P_{absolute}(z \mid y) & otherwise \end{cases}
```

```
Backoff models: absolute discounting
  see the dog
                                   p( puppy | see the ) = ?
  see the cat
                       2
  see the banana
                                   \alpha(see the) = ?
  see the man
  see the woman
                                 \# of types starting with "see the" * D
  see the car
                                         count("see the")
                    reserved_mass(see the) = \frac{6*D}{10} = \frac{6*0.75}{10} = 0.45
_{\omega}(z \mid xy) =
                            distribute this probability mass to all
\int C(xyz) - D
               if C(xyz) > 0
                            bigrams that we are backing off to

\frac{C(xy)}{\alpha(xy)P_{absolute}(z \mid y)} \quad otherwise
```

Calculating α

We have some number of bigrams we're going to backoff to, i.e. those X where $C(\sec$ the X) = 0, that is unseen trigrams starting with "see the"

When we backoff, for each of these, we'll be including their probability in the model: $P(X \mid the)$

 α is the normalizing constant so that the sum of these probabilities equals the reserved probability mass

$$\alpha(see\ the)*\sum_{X:C(see\ the\ X)==0}p(X|\ the)=reserved_mass(see\ the)$$

Calculating α

We can calculate a two ways

■ Based on those we haven't seen:

$$\alpha(\text{see the}) = \frac{reserved_mass(\text{see the})}{\sum\limits_{X:C(\text{see the } X)=0} p(X \mid \text{the})}$$

Or, more often, based on those we do see:

$$\alpha(\text{see the}) = \frac{reserved_mass(\text{see the})}{1 - \sum_{X:C(\text{see the } X) > 0} p(X \mid \text{the})}$$

Calculating α in general: trigrams

$$p(\ C\ |\ A\ B\)$$

$$Calculate the reserved mass \\ = \frac{\# \ of \ types \ starting \ with \ bigram *\ D}{count(bigram)}$$

$$Calculate the sum of the backed off probability. For bigram "A\ B": \\ 1 - \sum_{X : \mathcal{L}(A\ B\ X) > 0} p(X\ |\ B) \\ \text{either is fine, in practice} \\ \text{the left is easier} \\ \sum_{X : \mathcal{L}(A\ B\ X) = 0} p(X\ |\ B) \\ Calculate \ \alpha$$

$$Calculate \ \alpha$$

$$\alpha(A\ B) = \frac{reserved_mass(A\ B)}{1 - \sum_{X : \mathcal{L}(A\ B\ X) > 0} p(X\ |\ B)}$$

$$1 - \text{the sum of the bigram probabilities of those trigrams that we saw starting with bigram A B}$$

Calculating α in general: bigrams

$$p(\ B\ |\ A\)$$

$$Calculate the reserved mass$$

$$reserved_mass(unigram--A) = \frac{\# \ of \ types \ starting \ with \ unigram * D}{count(unigram)}$$

$$Calculate the sum \ of \ the \ backed \ off \ probability. \ For \ bigram "A B":$$

$$1 - \sum_{X:\mathcal{L}(A|X)>0} p(X) \qquad \text{either is fine in practice,} \qquad \sum_{X:\mathcal{L}(A|X)=0} p(X)$$

$$\text{the left is easier} \qquad 1 - \text{the sum of the unigram probabilities of those bigrams that we saw starting with word A}$$

Calculating backoff models in practice

Store the αs in another table $% \left\{ 1,2,...,n\right\}$

- If it's a trigram backed off to a bigram, it's a table keyed by the bigrams
- If it's a bigram backed off to a unigram, it's a table keyed by the unigrams

Compute the αs during training

- After calculating all of the probabilities of seen unigrams/bigrams/trigrams
- $\hfill\Box$ Go back through and calculate the αs (you should have all of the information you need)

During testing, it should then be easy to apply the backoff model with the $\alpha s \; pre\text{-}calculated$

Backoff models: absolute discounting

the Dow Jones 10 p(jumped | the Dow) = ?
the Dow rose 5
the Dow fell 5 What is the reserved mass?

of types starting with "the Dow" * D

count("the Dow")

reserved_mass(the Dow) = $\frac{3*D}{20} = \frac{3*0.75}{20} = 0.115$

 $\alpha(\text{the Dow}) = \frac{reserved_mass(\text{see the})}{1 - \sum_{X:C(\text{the Dow X}) > 0} p(X \mid \text{the})}$

Backoff models: absolute discounting

reserved_mass =

of types starting with bigram * D

count(bigram)

Two nice attributes:

- decreases if we've seen more bigrams
 - should be more confident that the unseen trigram is no good
- □ increases if the bigram tends to be followed by lots of other words
 - $\hfill \blacksquare$ will be more likely to see an unseen trigram