
9/8/20

1

LANGUAGE MODELING:
SMOOTHING
David Kauchak
CS159 – Fall 2020

some slides adapted from 
Jason Eisner

Admin

Assignment 2
¤ bigram language modeling
¤ Java
¤ Can work with partners

n Anyone looking for a partner?
¤ 2a: Due this Thursday
¤ 2b: Due next Wednesday
¤ Style/commenting (JavaDoc)
¤ Some advice

n Start now!
n Spend 1-2 hours working out an example by hand (you can check 

your answers with me)
n HashMap

Admin

Lab next class

Same time, but will be an interactive session

Today

smoothing 
techniques



9/8/20

2

Today

Take home ideas:
Key idea of smoothing is to redistribute the probability to 
handle less seen (or never seen) events

n Still must always maintain a true probability distribution

Lots of ways of smoothing data

Should take into account characteristics of your data!

Smoothing

P(I think today is a good day to be me) =

P(I | <start> <start>) x

P(think | <start> I) x

P(today| I think) x

P(is| think today) x

P(a| today is) x

P(good| is a) x

…

If any of these has never been 
seen before, prob = 0!

What if our test set contains the following sentence, but one of the 
trigrams never occurred in our training data?

Smoothing

P(I think today is a good day to be me) =

P(I | <start> <start>) x

P(think | <start> I) x

P(today| I think) x

P(is| think today) x

P(a| today is) x

P(good| is a) x

…

These probability estimates 
may be inaccurate.  
Smoothing can help reduce 
some of the noise.

The general smoothing problem

see the abacus  1 1/3 ? ?
see the abbot 0 0/3 ? ?

see the abduct 0 0/3 ? ?
see the above 2 2/3 ? ?
see the Abram 0 0/3 ? ?

… ? ?
see the zygote 0 0/3 ? ?

Total 3 3/3 ? ?

pr
ob

ab
ilit

y

mo
dif

ica
tio

n



9/8/20

3

Add-lambda smoothing

A large dictionary makes novel events too probable.

add l = 0.01 to all counts

see the abacus  1 1/3 1.01 1.01/203
see the abbot 0 0/3 0.01 0.01/203

see the abduct 0 0/3 0.01 0.01/203
see the above 2 2/3 2.01 2.01/203
see the Abram 0 0/3 0.01 0.01/203

… 0.01 0.01/203
see the zygote 0 0/3 0.01 0.01/203

Total 3 3/3 203

Add-lambda smoothing

see the abacus  1 1/3 1.01 1.01/203
see the abbot 0 0/3 0.01 0.01/203

see the abduct 0 0/3 0.01 0.01/203
see the above 2 2/3 2.01 2.01/203
see the Abram 0 0/3 0.01 0.01/203

… 0.01 0.01/203
see the zygote 0 0/3 0.01 0.01/203

Total 3 3/3 203

How should we pick lambda?

Setting smoothing parameters

Idea 1: try many l values & report the one that gets the best results?

TestTraining

Is this fair/appropriate?
12

Setting smoothing parameters

TestTraining

Training

collect counts from 
80% of the data

Now use 
that l to get 
smoothed 
counts from 
all 100% …

… and 
report 
results of 
that final 
model on 
test data.

Dev.

pick l that
gets best 
results on 
20% … 

problems? ideas?



9/8/20

4

Vocabulary

n-gram language modeling assumes we have a fixed 
vocabulary

¤ why?

Probability distributions are over finite events!

What happens when we encounter a word not in our 
vocabulary (Out Of Vocabulary)?

¤ If we don’t do anything, prob = 0 (or it’s not defined)
¤ Smoothing doesn’t really help us with this!

Vocabulary

To make this explicit, smoothing helps us with…

see the abacus  1 1.01
see the abbot 0 0.01

see the abduct 0 0.01
see the above 2 2.01
see the Abram 0 0.01

… 0.01
see the zygote 0 0.01

all entries in our vocabulary

Vocabulary

and…
Vocabulary

a
able
about
account
acid
across
…
young
zebra

10
1
2
0
0
3
…
1
0

Counts

10.01
1.01
2.01
0.01
0.01
3.01
…
1.01
0.01

Smoothed counts

How can we have words in our 
vocabulary we’ve never seen before?

Vocabulary

Choosing a vocabulary: ideas?
¤ Grab a list of English words from somewhere
¤ Use all of the words in your training data
¤ Use some of the words in your training data

n for example, all those the occur more than k times

Benefits/drawbacks?
¤ Ideally your vocabulary should represents words you’re 

likely to see
¤ Too many words: end up washing out your probability 

estimates (and getting poor estimates)
¤ Too few: lots of out of vocabulary



9/8/20

5

Vocabulary

No matter how you chose your vocabulary, you’re still 
going to have out of vocabulary (OOV) words

How can we deal with this?
¤ Ignore words we’ve never seen before

n Somewhat unsatisfying, though can work depending on the 
application

n Probability is then dependent on how many in vocabulary 
words are seen in a sentence/text

¤ Use a special symbol for OOV words and estimate the 
probability of out of vocabulary

Out of vocabulary

Add an extra word in your vocabulary to denote 
OOV (<OOV>, <UNK>)

Replace all words in your training corpus not in the 
vocabulary with <UNK>

¤ You’ll get bigrams, trigrams, etc with <UNK>
n p(<UNK> | “I am”)
n p(fast | “I <UNK>”)

During testing, similarly replace all OOV with <UNK>

Choosing a vocabulary

A common approach (and the one we’ll use for the 
assignment):

¤ Replace the first occurrence of each word by <UNK> in 
a data set

¤ Estimate probabilities normally

Vocabulary then is all words that occurred two or 
more times

This also discounts all word counts by 1 and gives that 
probability mass to <UNK>

Storing the table

see the abacus  1 1/3 1.01 1.01/203
see the abbot 0 0/3 0.01 0.01/203

see the abduct 0 0/3 0.01 0.01/203
see the above 2 2/3 2.01 2.01/203
see the Abram 0 0/3 0.01 0.01/203

… 0.01 0.01/203
see the zygote 0 0/3 0.01 0.01/203

Total 3 3/3 203

How are we storing this table?
Should we store all entries?



9/8/20

6

Storing the table

Hashtable (e.g. HashMap)
¤ fast retrieval
¤ fairly good memory usage

Only store those entries of things we’ve seen
¤ for example, we don’t store |V|3 trigrams

For trigrams we can:
¤ Store one hashtable with bigrams as keys
¤ Store a hashtable of hashtables (I’m recommending this)

Storing the table: 
add-lambda smoothing
For those we’ve seen before:

P(c | ab) = C(abc)+λ
C(ab)+?

see the abacus  1 1/3 1.01 1.01/203
see the abbot 0 0/3 0.01 0.01/203

see the abduct 0 0/3 0.01 0.01/203
see the above 2 2/3 2.01 2.01/203
see the Abram 0 0/3 0.01 0.01/203

… 0.01 0.01/203
see the zygote 0 0/3 0.01 0.01/203

Total 3 3/3 203

P(c | ab) = C(abc)
C(ab)

Unsmoothed (MLE) add-lambda smoothing

What value do we need 
here to make sure it stays a 
probability distribution?

Storing the table: 
add-lambda smoothing
For those we’ve seen before:

P(c | ab) = C(abc)+λ
C(ab)+λV

see the abacus  1 1/3 1.01 1.01/203
see the abbot 0 0/3 0.01 0.01/203

see the abduct 0 0/3 0.01 0.01/203
see the above 2 2/3 2.01 2.01/203
see the Abram 0 0/3 0.01 0.01/203

… 0.01 0.01/203
see the zygote 0 0/3 0.01 0.01/203

Total 3 3/3 203

P(c | ab) = C(abc)
C(ab)

Unsmoothed (MLE) add-lambda smoothing

For each word in the 
vocabulary, we pretend 
we’ve seen it λ times more 
(V = vocabulary size).

Storing the table: 
add-lambda smoothing

For those we’ve seen before:

Unseen n-grams: p(z|ab) = ?
€ 

P(c | ab) =
C(abc) + λ
C(ab) + λV

P(z | ab) = λ
C(ab)+λV



9/8/20

7

Problems with frequency based smoothing

The following bigrams have never been seen:

p( X| ate)p( X | San )

Which would add-lambda pick as most likely?

Which would you pick?

Witten-Bell Discounting

Some words are more likely to be followed by new words

San

Diego
Francisco
Luis
Jose
Marcos

ate

food
apples
bananas
hamburgers
a lot
for two
grapes
…

Witten-Bell Discounting

Probability mass is shifted around, depending on the 
context of words

If P(wi | wi-1,…,wi-m) = 0, then the smoothed 
probability PWB(wi | wi-1,…,wi-m) is higher if the 
sequence wi-1,…,wi-m occurs with many different 
words wk

Problems with frequency based smoothing

The following trigrams have never been seen:

p( cumquat | see the )

p( zygote | see the )p( car | see the )

Which would add-lambda pick as most likely?  
Witten-Bell?

Which would you pick?



9/8/20

8

Better smoothing approaches

Utilize information in lower-order models

Interpolation
¤ Combine probabilities of lower-order models in some linear combination

Backoff

¤ Often k = 0 (or 1)
¤ Combine the probabilities by “backing off” to lower models only when 

we don’t have enough information
€ 

P(z | xy) =
C*(xyz)
C(xy)

if C(xyz) > k

α(xy)P(z | y) otherwise

# 

$ 
% 

& % 

Smoothing: simple interpolation

Trigram is very context specific, very noisy

Unigram is context-independent, smooth

Interpolate Trigram, Bigram, Unigram for best 
combination

How should we determine λ and μ?

€ 

P(z | xy) ≈ λ C(xyz)
C(xy)

+ µ
C(yz)
C(y)

+ (1− λ −µ)C(z)
C(•)

Smoothing: finding parameter values

Just like we talked about before, split training data into 
training and development

Try lots of different values for l, µ on heldout data, 
pick best

Two approaches for finding these efficiently

¤ EM (expectation maximization)
¤ “Powell search” – see Numerical Recipes in C

Backoff models: absolute discounting

Subtract some absolute number from each of the 
counts (e.g. 0.75)

¤ How will this affect rare words?
¤ How will this affect common words?

€ 

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

$ 
% 
& 

' & 



9/8/20

9

Backoff models: absolute discounting

Subtract some absolute number from each of the 
counts (e.g. 0.75)

¤ will have a large effect on low counts (rare words)
¤ will have a small effect on large counts (common words)

€ 

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

$ 
% 
& 

' & 

Backoff models: absolute discounting

€ 

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

$ 
% 
& 

' & 

What is α(xy)?

Backoff models: absolute discounting

trigram model: p(z|xy)
(before discounting)

se
en

 tr
ig

ra
m

s
(x

yz
 o

cc
ur

re
d)

trigram model p(z|xy)
(after discounting)

un
se

en
 

w
or

ds
(x

yz
 d

id
n’

t 
oc

cu
r)

se
en

 tr
ig

ra
m

s
(x

yz
 o

cc
ur

re
d)

bigram model p(z|y)*
(*for z where xyz didn’t occur)

€ 

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

$ 
% 
& 

' & 

Backoff models: absolute discounting

€ 

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

$ 
% 
& 

' & 

see the dog 1
see the cat 2
see the banana 4
see the man 1
see the woman 1
see the car 1

p( cat | see the ) = ?

p( puppy | see the ) = ?



9/8/20

10

Backoff models: absolute discounting

see the dog 1
see the cat 2
see the banana 4
see the man 1
see the woman 1
see the car 1

p( cat | see the ) = ?

€ 

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

$ 
% 
& 

' & 

€ 

2 −D
10

=
2 − 0.75
10

= .125

Backoff models: absolute discounting

see the dog 1
see the cat 2
see the banana 4
see the man 1
see the woman 1
see the car 1

p( puppy | see the ) = ?

α(see the) = ?

How much probability mass did 
we reserve/discount for the 
bigram model?

€ 

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

$ 
% 
& 

' & 

Backoff models: absolute discounting

see the dog 1
see the cat 2
see the banana 4
see the man 1
see the woman 1
see the car 1

p( puppy | see the ) = ?

α(see the) = ?

# of types starting with “see the” * D

count(“see the”)

For each of the unique trigrams, we 
subtracted D/count(“see the”) from the 
probability distribution

€ 

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

$ 
% 
& 

' & 

Backoff models: absolute discounting

see the dog 1
see the cat 2
see the banana 4
see the man 1
see the woman 1
see the car 1

€ 

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

$ 
% 
& 

' & 

p( puppy | see the ) = ?

α(see the) = ?

€ 

reserved_mass(see the) =
6*D
10

=
6*0.75

10
= 0.45

distribute this probability mass to all 
bigrams that we are backing off to

# of types starting with “see the” * D

count(“see the”)



9/8/20

11

Calculating α

We have some number of bigrams we’re going to backoff
to, i.e. those X where C(see the X) = 0, that is unseen 
trigrams starting with “see the”

When we backoff, for each of these, we’ll be including their 
probability in the model: P(X | the)

α is the normalizing constant so that the sum of these 
probabilities equals the reserved probability mass

α(see the)* p(X| the)
X:C(see the X) == 0

∑ = reserved _mass(see the)

Calculating α

We can calculate α two ways
¤ Based on those we haven’t seen:

¤ Or, more often, based on those we do see:

€ 

α(see the) =
reserved _mass(see the)

p(X | the)
X :C (see the X) = 0
∑

€ 

α(see the) =
reserved _mass(see the)

1− p(X | the)
X :C (see the X) >  0

∑

Calculating α in general: trigrams

Calculate the reserved mass

Calculate the sum of the backed off probability.  For bigram “A B”:

Calculate α

reserved_mass(bigram--A B) = 
# of types starting with bigram * D

count(bigram)

€ 

1− p(X | B)
X :C (A B X) >  0
∑

€ 

p(X | B)
X :C (A B X) = 0
∑either is fine, in practice 

the left is easier

€ 

α(A B) =
reserved _mass(A B)

1− p(X | B)
X :C (A B X) >  0
∑

1 – the sum of the 
bigram probabilities of 
those trigrams that we 
saw starting with bigram 
A B

p( C | A B )

Calculating α in general: bigrams

Calculate the reserved mass

Calculate the sum of the backed off probability.  For bigram “A B”:

Calculate α

reserved_mass(unigram--A) = 
# of types starting with unigram * D

count(unigram)

€ 

1− p(X)
X :C (A X) >  0
∑

€ 

p(X)
X :C (A X) = 0
∑either is fine in practice, 

the left is easier

€ 

α(A) =
reserved _mass(A)

1− p(X)
X :C (A X) >  0
∑

1 – the sum of the 
unigram probabilities of 
those bigrams that we 
saw starting with word A

p( B | A )



9/8/20

12

Calculating backoff models in practice

Store the αs in another table
¤ If it’s a trigram backed off to a bigram, it’s a table keyed by the 

bigrams
¤ If it’s a bigram backed off to a unigram, it’s a table keyed by the 

unigrams

Compute the αs during training
¤ After calculating all of the probabilities of seen unigrams/bigrams/trigrams
¤ Go back through and calculate the αs (you should have all of the 

information you need)

During testing, it should then be easy to apply the backoff model with the 
αs pre-calculated 

Backoff models: absolute discounting

p( jumped | the Dow ) = ?

What is the reserved mass?

the Dow Jones 10
the Dow rose 5
the Dow fell 5

€ 

reserved_mass(the Dow) =
3*D
20

=
3*0.75

20
= 0.115

# of types starting with “the Dow” * D

count(“the Dow”)

€ 

α(the Dow) =
reserved _mass(see the)

1− p(X | the)
X :C ( the Dow X) >  0

∑

Backoff models: absolute discounting

Two nice attributes:
¤ decreases if we’ve seen more bigrams

n should be more confident that the unseen trigram is no good
¤ increases if the bigram tends to be followed by lots of 

other words
n will be more likely to see an unseen trigram

reserved_mass = 
# of types starting with bigram * D

count(bigram)


