

Admin

Assignment 2

\square bigram language modeling

- Java
- Can work with partners
- Anyone looking for a partner?
- 2a: Due this Thursday
- 2b: Due next Wednesday
- Style/commenting (JavaDoc)
\square Some advice
- Start now!
- Spend 1-2 hours working out an example by hand (you can check your answers with me)
- HashMap

Admin
Lab next class
Same time, but will be an interactive session

Today
Take home ideas: Key idea of smoothing is to redistribute the probability to handle less seen (or never seen) events \quad - Still must always maintain a true probability distribution Lots of ways of smoothing data Should take into account characteristics of your data!

Smoothing						
What if our test set contains the following sentence, but one of the trigrams never occurred in our training data?```P(I think today is a good day to be me) = P(I\| <start> <start>) x P(think	<start> I) x P(today	I think) x If any of these has never been P(is	think today) x seen before, prob = 0! P(a	today is) } P(good	is a) x ...```	

Add-lambda smoothing				
A large dictionary makes novel events too probable.				
add $\lambda=0.01$ to all counts				
see the abacus	1	1/3	1.01	1.01/203
see the abbot	0	0/3	0.01	0.01/203
see the abduct	0	0/3	0.01	0.01/203
see the above	2	2/3	2.01	2.01/203
see the Abram	0	0/3	0.01	0.01/203
...			0.01	0.01/203
see the zygote	0	0/3	0.01	0.01/203
Total	3	3/3	203	

| Setting smoothing parameters |
| :---: | :---: |
| Idea 1: try many λ values \& report the one that gets the best results? |
| Training Test
 Is this fair/appropriate? |

Vocabulary

n-gram language modeling assumes we have a fixed vocabulary

- why?

Probability distributions are over finite events!

What happens when we encounter a word not in our vocabulary (Out Of Vocabulary)?

- If we don't do anything, prob $=0$ (or it's not defined)
\square Smoothing doesn't really help us with this!

Vocabulary		
and...		
Vocabulary	Counts	Smoothed counts
a	10	10.01
able	1	1.01
about	2	2.01
account	0	0.01
acid	0	0.01
across	3	3.01
\ldots	\cdots	\cdots
young	1	1.01
zebra	0	0.01
How can we have words in our vocabulary we've never seen before?		

Vocabulary

To make this explicit, smoothing helps us with...

Vocabulary
Choosing a vocabulary: ideas?
\square Grab a list of English words from somewhere
\square Use all of the words in your training data
\square Use some of the words in your training data
■ for example, all those the occur more than k times
:---
\squareIdeally your vocabulary should represents words you're likely to see \square Too many words: end up washing out your probability estimates (and getting poor estimates) \square Too few: lots of out of vocabulary

Vocabulary

No matter how you chose your vocabulary, you're still going to have out of vocabulary (OOV) words

How can we deal with this?

- Ignore words we've never seen before
- Somewhat unsatisfying, though can work depending on the application
- Probability is then dependent on how many in vocabulary words are seen in a sentence/text
\square Use a special symbol for OOV words and estimate the probability of out of vocabulary

Choosing a vocabulary

A common approach (and the one we'll use for the assignment):
\square Replace the first occurrence of each word by <UNK> in a data set

Vocabulary then is all words that occurred two or more times

This also discounts all word counts by 1 and gives that probability mass to <UNK>

$$
\square \text { Estimate probabilities normally }
$$

Out of vocabulary

Add an extra word in your vocabulary to denote OOV (<OOV>, <UNK>)

Replace all words in your training corpus not in the vocabulary with <UNK>

- You'll get bigrams, trigrams, etc with <UNK>
- p (<UNK> | " $\mathrm{lam}^{\prime \prime}$)
- p(fast | "I <UNK>")

During testing, similarly replace all OOV with <UNK>

Storing the table

[^0]| see the abacus | 1 | $1 / 3$ | 1.01 | $1.01 / 203$ |
| ---: | ---: | ---: | :--- | :--- |
| see the abbot | 0 | $0 / 3$ | 0.01 | $0.01 / 203$ |
| see the abduct | 0 | $0 / 3$ | 0.01 | $0.01 / 203$ |
| see the above | 2 | $2 / 3$ | 2.01 | $2.01 / 203$ |
| see the Abram | 0 | $0 / 3$ | 0.01 | $0.01 / 203$ |
| $\ldots .$. | | 0.01 | $0.01 / 203$ | |
| see the zygote | 0 | $0 / 3$ | 0.01 | $0.01 / 203$ |
| Total | $\mathbf{3}$ | $\mathbf{3 / 3}$ | 203 | |

Storing the table

Hashtable (e.g. HashMap)
\square fast retrieval
\square fairly good memory usage

Only store those entries of things we've seen \square for example, we don't store $|V|^{3}$ trigrams

For trigrams we can:

\square Store one hashtable with bigrams as keys

- Store a hashtable of hashtables (l'm recommending this)

Storing the table:
 add-lambda smoothing

For those we've seen before:

$$
P(c \mid a b)=\frac{C(a b c)+\lambda}{C(a b)+\lambda V}
$$

Unseen n-grams: $p(z \mid a b)=$?

$$
P(z \mid a b)=\frac{\lambda}{C(a b)+\lambda V}
$$

Problems with frequency based smoothing

The following bigrams have never been seen:

$$
p(X \mid \text { San }) \quad p(X \mid \text { ate })
$$

Which would add-lambda pick as most likely?
Which would you pick?

Witten-Bell Discounting

Some words are more likely to be followed by new words

		food
	Diego	apples
Francisco	bananas	
San	ate	hamburgers
	Jose	a lot
	Marcos	for two
		grapes

bananas
hamburgers
for two grap

Witten-Bell Discounting

Probability mass is shifted around, depending on the context of words

If $P\left(w_{i} \mid w_{i-1}, \ldots, w_{i-m}\right)=0$, then the smoothed probability $\mathrm{P}_{\mathrm{w}_{B}}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{w}_{\mathrm{i}-1}, \ldots, \mathrm{w}_{\mathrm{i}-\mathrm{m}}\right)$ is higher if the sequence $\mathrm{w}_{\mathrm{i}-1}, \ldots, \mathrm{w}_{\mathrm{i}-\mathrm{m}}$ occurs with many different words w_{k}

Problems with frequency based smoothing

The following trigrams have never been seen:
p (car | see the) p (zygote \| see the)

$$
\mathrm{p} \text { (cumquat \| see the) }
$$

Which would add-lambda pick as most likely?
Witten-Bell?
Which would you pick?

Better smoothing approaches

Utilize information in lower-order models

Interpolation

- Combine probabilities of lower-order models in some linear combination

Backoff

$$
P(z \mid x y)= \begin{cases}\frac{C^{*}(x y z)}{C(x y)} & \text { if } C(x y z)>k \\ \alpha(x y) P(z \mid y) \text { otherwise }\end{cases}
$$

- Often $\mathrm{k}=0$ (or 1)
- Combine the probabilities by "backing off" to lower models only when we don't have enough information

Smoothing: simple interpolation

$$
P(z \mid x y) \approx \lambda \frac{C(x y z)}{C(x y)}+\mu \frac{C(y z)}{C(y)}+(1-\lambda-\mu) \frac{C(z)}{C(\bullet)}
$$

Trigram is very context specific, very noisy

Unigram is context-independent, smooth

Interpolate Trigram, Bigram, Unigram for best combination

How should we determine λ and μ ?

Smoothing: finding parameter values

Just like we talked about before, split training data into training and development

Try lots of different values for λ, μ on heldout data, pick best

Two approaches for finding these efficiently

- EM (expectation maximization)
- "Powell search" - see Numerical Recipes in C

Backoff models: absolute discounting

$$
\begin{aligned}
& P_{\text {absolutet }}(z \mid x y)= \\
& \qquad \begin{cases}\frac{C(x y z)-D}{C(x y)} & \text { if } C(x y z)>0 \\
\alpha(x y) P_{\text {absolute }}(z \mid y) & \text { otherwise }\end{cases}
\end{aligned}
$$

Subtract some absolute number from each of the counts (e.g. 0.75)

- How will this affect rare words?
\square How will this affect common words?

Backoff models: absolute discounting

Backoff models: absolute discounting			
see the dog see the cat see the banana see the man see the woman see the car	1	$\mathrm{p}($ cat \mid see the $)=$?	
	2		
	4		
	1	$\frac{2-D}{10}=\frac{2-0.75}{10}=.125$	
	1		
	1	$10=10$	
		$P_{\text {abosolute }}(z \mid x y)=$	
		$\left\{\begin{array}{l}\frac{C(x y z)-D}{C(x y)}\end{array}\right.$ if $C(x y z)>0$	

Backoff models: absolute discounting		
see the dog see the cat see the banana see the man see the woman see the car	1	$\mathrm{p}($ puppy \mid see the $)=$?
	4	$\alpha($ see the $)=$?
	1	
	1	\# of types starting with "see the" * D
		count("see the")
		For each of the unique trigrams, we subtracted $D /$ count("see the") from the probability distribution

Calculating α

We have some number of bigrams we're going to backoff to, i.e. those X where C (see the X) $=0$, that is unseen trigrams starting with "see the"

When we backoff, for each of these, we'll be including their probability in the model: $P(X \mid$ the $)$
α is the normalizing constant so that the sum of these probabilities equals the reserved probability mass

$$
\alpha(\text { see the }) * \sum_{X: C(\text { see the } \mathrm{X})=0} p(\mathrm{X} \mid \text { the })=\text { reserved_mass }(\text { see the })
$$

Calculating α in general: trigrams

$p(C \mid A B)$

Calculate the reserved mass

$$
\text { reserved_mass(bigram--A B) }=\text { \# of types starting with bigram * D }
$$

count(bigram)

Calculate the sum of the backed off probability. For bigram "A B":

$$
1-\sum_{x: C(\mathrm{ABX})>0} p(\mathrm{X} \mid \mathrm{B}) \quad \begin{aligned}
& \text { either is fine, in practice } \\
& \text { the left is easier }
\end{aligned} \quad \sum_{x: C(\mathrm{AB} \mathrm{~B})=0} p(\mathrm{X} \mid \mathrm{B})
$$

Calculate α

Calculating α

We can calculate α two ways
\square Based on those we haven't seen:

$$
\alpha(\text { see the })=\frac{\text { reserved_mass }(\text { see the })}{\sum_{x: C(\text { see the } \mathrm{X})=0} p(\mathrm{X} \mid \text { the })}
$$

\square Or, more often, based on those we do see:

$$
\alpha(\text { see the })=\frac{\text { reserved_mass }(\text { see the })}{1-\sum_{x: C(\text { see the } \mathrm{X})>0} p(\mathrm{X} \mid \text { the })}
$$

Calculating α in general: bigrams

$p(B \mid A)$
Calculate the reserved mass

$$
\text { reserved_mass(unigram--A) }=\frac{\# \text { of types starting with unigram *D }}{\text { count(unigram) }}
$$

Calculate the sum of the backed off probability. For bigram "A B":

$$
1-\sum_{x: C(\mathrm{~A})>0} p(\mathrm{X}) \quad \begin{aligned}
& \text { either is fine in practice, } \\
& \text { the left is easier }
\end{aligned} \quad \sum_{x: C(\mathrm{AX})=0} p(\mathrm{X})
$$

Calculate α

$$
\alpha(\mathrm{A})=\frac{\text { reserved_mass }(\mathrm{A})}{1-\sum_{X: C(\mathrm{AX})>0} p(\mathrm{X})} \quad \begin{aligned}
& 1-\text { the sum of the } \\
& \text { unigram probabilities of } \\
& \text { those bigrams that we } \\
& \text { saw starting with word } \mathrm{A}
\end{aligned}
$$

Calculating backoff models in practice
Store the as in another table

- If it's a trigram backed off to a bigram, it's a table keyed by the
bigrams
- If it's a bigram backed off to a unigram, it's a table keyed by the
unigrams
Compute the as during training
- After calculating all of the probabilities of seen unigrams/bigrams/trigrams
Go back through and calculate the α (you should have all of the
information you need)
During testing, it should then be easy to apply the backoff model with the
as pre-calculated

Backoff	models: absolute discounting
the Dow Jones the Dow rose the Dow fell	$\begin{array}{cc} 10 & \mathrm{p} \text { (jumped \| the Dow) = ? } \\ 5 & \text { What is the reserved mass? } \\ \text { \# of types starting with "the Dow" *D } \\ \text { count("the Dow") } \\ \text { reserved_mass (the Dow) }=\frac{3 * D}{20}=\frac{3 * 0.75}{20}=0.115 \\ \alpha(\text { the Dow })=\frac{\text { reserved_mass }(\text { see the })}{1-\sum_{x: C(\text { the Dow } \mathrm{X})>0} p(\mathrm{X} \mid \text { the })} \end{array}$

Backoff models: absolute discounting
reserved_mass $=\quad$\# of types starting with bigram * D count(bigram)
Two nice attributes:
\quad decreases if we've seen more bigrams
\quad increald be more confident that the unseen trigram is no good bigram tends to be followed by lots of
other words
\quad will be more likely to see an unseen trigram

[^0]: How are we storing this table?
 Should we store all entries?

