
\square test individual components of your regex first, then put

Admin

Assignment advice

 them all together\square write test cases

Why probability?

Prostitutes Appeal to Pope

Language is ambiguous

Probability theory gives us a tool to model this ambiguity in reasonable ways.

Basic Probability Theory: terminology

[^0]

Events
We're interested in probabilities of events $\square p(\{2\})$ - p(even) \square p(odd) - p(parasitic gap) - p(first word in a sentence is "banana")

Random variables								
A random variable is a mapping from the sample space to a number (think events) It represents all the possible values of something we want to measure in an experiment For example, random variable, X, could be the number of heads for a coin tossed three times								
space	ннн	HHT	HTH	нTt	тнн	THT	тн	TTT
x	3	2	2	1	2	1	1	0
Really for notational convenience, since the event space can sometimes be irregular								

Random variables

We can then talk about the probability of the different values of a random variable								
The definition of probabilities over all of the possible values of a random variable defines a probability distribution								
space	HHH	HHT	HTH	HTt	THH	THT	TTH	ITT
x	3	2	2	1	2	1	1	0
X $\mathrm{P}(\mathrm{X})$								
3			P	$P(X=3)=$				
2			P	$P(X=2)=$				
1				$P(X=1)=$				
0			P	$\mathrm{P}(\mathrm{X}=0)=$				

Random variables								
We can then talk about the probability of the different values of a randon variable The definition of probabilities over all of the possible values of a random variable defines a probability distribution								
space	HHH	HHT	HTH	HTt	THH	THT	TTH	TTT
x	3	2	2	1	2	1	1	0
			$\mathrm{P}(\mathrm{X})$					
			$P(X=3)=1 / 8$					
			$\mathrm{P}(\mathrm{X}=2)=3 / 8$					
			$\mathrm{P}(\mathrm{X}=1)=3 / 8$					
			$P(X=0)=1 / 8$					

Unconditional/prior probability

Simplest form of probability distribution is

- $P(X)$

Prior probability: without any additional information:

- What is the probability of heads on a coin toss?
\square What is the probability of a sentence containing a pronoun?
\square What is the probability of a sentence containing the word "banana"?
\square What is the probability of a document discussing politics? ㅁ..

What is the probability of getting HHH for three coin tosses, assuming a fair coin?

$$
1 / 8
$$

What is the probability of getting THT for three coin tosses, assuming a fair coin?
$1 / 8$

Joint distribution			
We can also talk about probability distributions over multiple variables			
```P(X,Y) \square probability of }X\mathrm{ and } \square a distribution over the cross product of possible values```			
NLPPass $\quad$ P(NLPPass)			
true	0.89	NLPPass, En	P(NLPPass, EngPass)
false	0.11	true, true	. 88
EngPass	P(EngPass)	true, false	. 01
		false, true	. 04
true	0.92	false, false	. 07
false	0.08		


Joint distribution		
Still a probability distribution   -all values between 0 and 1 , inclusive   - all values sum to 1		
All questions/probabilities of the two variables can be calculated from the joint distribution		
NLPPass, EngPass	P(NLPPass, EngPass)	What is P(ENGPass)?
true, true	. 88	
true, false	. 01	
false, true	. 04	
false, false	. 07	



Joint distribution		
$P(x)=\sum_{y \in Y} p(x, y)$		
		Called "marginalization", aka summing over a variable
NLPPass, EngPass	P(NLPPass, EngPass)	
true, true	. 88	
true, false	. 01	
false, true	. 04	
false, false	. 07	

## Conditional probability

As we learn more information, we can update our probability distribution
$P(X \mid Y)$ models this (read "probability of $X$ given $Y$ ")

- What is the probability of heads given that both sides of the coin are heads?
- What is the probability the document is about politics, given that it contains the word "Clinton"?
- What is the probability of the word "banana" given that the sentence also contains the word "split"?

Notice that it is still a distribution over the values of $X$

## Conditional probability

$$
p(X \mid Y)=?
$$



In terms of pior and joint distributions, what is the conditional probability distribution?


Conditional probability		
		$p(X \mid Y)=\frac{P(X, Y)}{P(Y)}$
NLPPass, EngPass	P(NLPPass, EngPass)	
true, true	. 88	What is:   $p($ NLPPass=true \| EngPass=false)?
true, false	. 01	
false, true	. 04	
false, false	. 07	
$P($ true, false $)=0.01=0.125$		
$P($ EngPass $=$ false $)=0.01+0.07=0.08$		
Notice this is very different than p (NLPPass=true) $=0.89$		



## Properties of probabilities

$$
P(A \text { or } B)=P(A)+P(B)-P(A, B)
$$



Properties of probabilities
$P(\neg \mathrm{E})=1-\mathrm{P}(\mathrm{E})$
More generally:
$\square$ Given events $\mathrm{E}=\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{n}$
$p\left(e_{i}\right)=1-\sum_{j=1: n, j \neq i} p\left(e_{j}\right)$
$\mathrm{P}(\mathrm{E} 1, \mathrm{E} 2) \leq \mathrm{P}(\mathrm{E} 1)$


Chain rule (aka product rule)
$p(X \mid Y)=\frac{P(X, Y)}{P(Y)}$
We can view calculating the probability of X AND $Y$
occurring as two steps:
1. Y occurs with some probability P(Y)
2. Then, X occurs, given that Y has occurred

## Chain rule

$p(X, Y, Z)=P(X \mid Y, Z) P(Y, Z)$
$p(X, Y, Z)=P(X, Y \mid Z) P(Z)$
$p(X, Y, Z)=P(X \mid Y, Z) P(Y \mid Z) P(Z)$
$p(X, Y, Z)=P(Y, Z \mid X) P(X)$

$$
p\left(X_{1}, X_{2}, \ldots, X_{n}\right)=?
$$

## Applications of the chain rule

We saw that we could calculate the individual prior probabilities using the joint distribution

$$
p(x)=\sum_{y \in Y} p(x, y)
$$

What if we don't have the joint distribution, but do have conditional probability information:

$$
\square P(Y)
$$

- $P(X \mid Y)$

$$
p(x)=\sum_{y \in Y} p(y) p(x \mid y)
$$

Bayes' rule (theorem)

$$
\begin{aligned}
& p(X \mid Y)=\frac{P(X, Y)}{P(Y)} \quad \square p(X, Y)=P(X \mid Y) P(Y) \\
& p(Y \mid X)=\frac{P(X, Y)}{P(X)} \quad \square p(X, Y)=P(Y \mid X) P(X)
\end{aligned}
$$

$$
p(X \mid Y)=\frac{P(Y \mid X) P(X)}{P(Y)}
$$

Bayes rule
p(disease I symptoms)
How would you estimate this?
Find a bunch of people with those symptoms and see how many
have the disease
Is this feasible?

## Bayes rule

p(disease | symptoms)

How would you estimate this?

Find a bunch of people with those symptoms and see how many have the disease

Is this feasible?

## Bayes rule

Allows us to talk about $P(Y \mid X)$ rather than $P(X \mid Y)$

Sometimes this can be more intuitive

Why?

$$
p(X \mid Y)=\frac{P(Y \mid X) P(X)}{P(Y)}
$$

Bayes rule
$p$ (disease | symptoms) $\propto p$ ( symptoms | disease )


How would you estimate this?

Find a bunch of people with the disease and see how many have this set of symptoms. Much easier!

Bayes rule
$p$ ( linguistic phenomena \| features )   - For all examples that had those features, how many had that phenomena?   口 p(features\| linguistic phenomena)   - For all the examples with that phenomena, how many had this feature   p(cause \| effect) vs. p(effect




## Parasitic gaps

http://literalminded.wordpress.com/2009/02/10/do ugs-parasitic-gap/

## Parasitic gaps

These l'll put $\underset{\text { gap }}{ }$ away without folding $\underset{\text { gap }}{ }$.

1. Cannot exist by themselves (parasitic)

These l'll put my pants away without folding $\qquad$ .
2. They're optional

These l'll put $\qquad$ away without folding them. gap

## Frequency of parasitic gaps

Parasitic gaps occur on average in $1 / 100,000$ sentences

Problem:
You have developed a complicated set of regular expressions to try and identify parasitic gaps. If a sentence has a parasitic gap, it correctly identifies it 95\% of the time. If it doesn't, it will incorrectly say it does with probability 0.005 . Suppose we run it on a sentence and the algorithm says it has a parasitic gap, what is the probability it actually is?


## Prob of parasitic gaps

You have developed a complicated set of regular expressions to try and identify parasitic gaps. If a sentence has a parasitic gap, it correctly identifies it $95 \%$ of the time. If it doesn't, it will incorrectly say it does with probability 0.005 . Suppose we run it on a sentence and the algorithm says it has a parasitic gap, what is the probability it actually does?
$G=$ gap $\mathrm{T}=$ test positive

$$
\begin{aligned}
p(g \mid t) & =\frac{p(t \mid g) p(g)}{p(t)} \\
& =\frac{p(t \mid g) p(g)}{\sum_{g \in G} p(g) p(t \mid g)}=\frac{p(t \mid g) p(g)}{p(g) p(t \mid g)+p(\bar{g}) p(t \mid \bar{g})}
\end{aligned}
$$

## Prob of parasitic gaps

You have developed a complicated set of regular expressions to try and identify parasitic gaps. If a sentence has a parasitic gap, it correctly identifies it $95 \%$ of the time. If it doesn't, it will incorrectly say it does with probability 0.005 . Suppose we run it on a sentence and the algorithm says it has a parasitic gap, what is the probability it actually does?
$p(g \mid t)=?$

## Prob of parasitic gaps

 You have developed a complicated set of regular expressions to try and identifyparasitic gaps. If a sentence has a parasitic gap, it correctly identifies it $95 \%$ of the time. If it doesn't, it will incorrectly say it does with probability 0.005 . Suppose we run it on a sentence and the algorithm says it has a parasitic gap, what is the probability it actually does?

$$
\begin{aligned}
p(g \mid t) & =\frac{p(t \mid g) p(g)}{p(g) p(t \mid g)+p(\bar{g}) p(t \mid \bar{g})} \\
& \begin{array}{l}
\mathrm{G}=\text { gap } \\
\mathrm{T}=\text { test positive }
\end{array} \\
& \frac{0.95 * 0.00001}{0.00001 * 0.95+0.99999 * 0.005} \approx 0.002
\end{aligned}
$$


[^0]:    An experiment has a set of potential outcomes, e.g., throw a dice, "look at" another sentence

    The sample space of an experiment is the set of all possible outcomes, e.g., $\{1,2,3,4,5,6\}$

    In NLP our sample spaces tend to be very large

    - All words, bigrams, 5-grams
    - All sentences of length 20 (given a finite vocabulary)
    - All sentences
    - All parse trees over a given sentence

