

Training the perceptron

First wave in neural networks in the 1960's

Single neuron

Trainable: its threshold and input weights can be modified

If the neuron doesn't give the desired output, then it has made a mistake

Input weights and threshold can be changed according to a learning algorithm

10

A٢	1D	
X 1	X 2	x_1 and x_2
0	0	0
0	1	0
1	0	0
1	1	1
	I	

A method to the madness

blue = positive

yellow triangles = positive

all others negative

How did you figure this out (or some of it)?

29

30

Deep learning

Deep learning is a branch of machine learning based on a set of algorithms that attempt to model high level abstractions in data by using a deep graph with multiple processing layers, composed of multiple linear and non-linear transformations.

Deep learning is part of a broader family of machine learning methods based on learning representations of data.

49

Deep learning Key: learning better features that abstract from the "raw" data Using learned feature representations based on large amounts of data, generally unsupervised Using classifiers with multiple layers of learning

word2vec

How many people have heard of it?

What is it?

55

esults				
ctor(word1) – v	ector(wo	rd2) = ve	ector(wor	d3) - X
			·	
word1 is to v	vord2 as v	word3 is to	Х	
Type of relationship	Word	l Pair 1	Wo	rd Pair 2
Type of relationship Common capital city	Word	Pair 1 Greece	Wo Oslo	rd Pair 2 Norway
Type of relationship Common capital city All capital cities	Word Athens Astana	l Pair 1 Greece Kazakhstan	Wo Oslo Harare	rd Pair 2 Norway Zimbabwe
Type of relationship Common capital city All capital cities Currency	Word Athens Astana Angola	Pair 1 Greece Kazakhstan kwanza	Wo Oslo Harare Iran	rd Pair 2 Norway Zimbabwe rial
Type of relationship Common capital city All capital cities Currency City-in-state	Word Athens Astana Angola Chicago	l Pair 1 Greece Kazakhstan kwanza Illinois	Wo Oslo Harare Iran Stockton	rd Pair 2 Norway Zimbabwe rial California

word2vec resources

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

https://code.google.com/archive/p/word2vec/

https://deeplearning4j.org/word2vec

https://arxiv.org/pdf/1301.3781v3.pdf