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Neural Networks

Neural Networks try to mimic the structure and function of our 
nervous system

People like biologically motivated approaches
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Our Nervous System
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Our nervous system: 
the computer science view

the human brain is a large collection 
of interconnected neurons

a NEURON is a brain cell
¤ they collect, process, and disseminate 

electrical signals
¤ they are connected via synapses
¤ they FIRE depending on the conditions 

of the neighboring neurons
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Artificial Neural Networks

Node (Neuron)
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our approximation
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W is the strength of signal sent between A and B.

If A fires and w is positive, then A stimulates B.

If A fires and w is negative, then A inhibits B.

Weight wNode A Node B

(neuron) (neuron)
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…

Neurons often have many, many connected input neurons

If a neuron is stimulated enough, then it also fires 

How much stimulation is required is determined by its threshold
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A Single Neuron/Perceptron
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Each input contributes:
xi * wi
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Activation functions

hard threshold:

sigmoid

tanh x

€ 

g(x) =
1

1+ e−ax

why other threshold functions?

𝑔 𝑖𝑛 = %1 𝑖𝑓 𝑖𝑛 ≥ 𝑇
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Weighted sum is 0.5, 
which is not  larger than 
the threshold

A Single Neuron/Perceptron
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which is larger than the 
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Neural network

inputs

Individual 
perceptrons/neurons
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Neural network

inputs
some inputs are 
provided/entered
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Neural network

inputs

each perceptron computes and 
calculates an answer
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Neural network

inputs

those answers become inputs 
for the next level
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Neural network

inputs

finally get the answer after all 
levels compute
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Computation (assume threshold 0)
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Computation
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-0.03+0.01=-0.02
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0.495

0.483*0.5+0.495=0.7365

0.676
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Neural networks
Different kinds/characteristics of networks

inputs

inputs inputs

How are these different?

inputs
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Hidden units/layers

inputs

inputs

Feed forward networks

hidden units/layer
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Hidden units/layers

inputs

Can have many layers of 
hidden units of differing sizes

To count the number of layers, 
you count all but the inputs…
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Hidden units/layers

inputs

inputs

2-layer network 3-layer network

26

Alternate ways of visualizing

inputs

2-layer network

Sometimes the input layer will be drawn with nodes as well

inputs

2-layer network
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Multiple outputs

inputs

Can be used to model multiclass 
datasets or more interesting 
predictors, e.g. images

0 1
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Multiple outputs

input output
(edge detection)
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Neural networks

Recurrent network

Output is fed back to input

Can support memory!

Good for temporal data

inputs
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History of Neural Networks

McCulloch and Pitts (1943) – introduced model of artificial 
neurons and suggested they could learn

Hebb (1949) – Simple updating rule for learning

Rosenblatt (1962) - the perceptron model

Minsky and Papert (1969) – wrote Perceptrons

Bryson and Ho (1969, but largely ignored until 1980s--
Rosenblatt) – invented back-propagation learning for 
multilayer networks
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