

1

Final project

1. Your project should relate to something involving NLP
2. Your project must include a solid experimental evaluation
3. Your project should be in a group of 2-4. If you'd like to do it solo, please come talk to me.

3

Admin

Assignment 6b

No class Tuesday

Assignment 7 out Monday

Final project

date	time	description
$11 / 5$	in-class	Project proposal presentation
$11 / 11$	$11: 59 \mathrm{pm}$	Project proposal write-up
$11 / 11$	$11: 59 \mathrm{pm}$	Status report
$11 / 23$	$11: 59 \mathrm{pm}$	Paper draft
$11 / 24$	in-class	Presentation
$11 / 25$	$11: 59 \mathrm{pm}$	Final paper and code

Read the final project handout ASAP!
Start forming groups and thinking about what you want to do

4

Final project ideas
pick a text classification task

- evaluate different machine learning methods
- implement a machine learning method
- analyze different feature categories
n -gram language modeling
- implement and compare other smoothing techniques
- implement alternative models
parsing
- lexicalized PCFG (with smoothing)
n-best list generation
. parse output reranking
- implement another parsing approach and compare
- parsing non-traditional domains (e.g. twitter)

EM

- try and implement IBM model 2
- word-level translation models

5

Basic steps for probabilistic modeling

Step 1: pick a model	Probabilistic models
Which model do we use, Step 2: figure out how to estimate the probabilities for we calculate p(feature, label)?	
the model	How do train the model, i.e. how to we we estimate the probabilities for the model?
Step 3 (optional): deal with overfitting	How do we deal with overfitting?

7

Final project application areas

spelling correction | part of speech tagger |
| :--- |
| text chunker |
| dialogue generation |
| pronoun resolution |
| word sense disambiguation |
| machine translation |
| information retrieval |
| information extraction |
| question answering |
| summarization |
| speech recognition |

6

Naïve Bayes assumption
$p($ features, label $)=p(y) \prod_{j=1}^{m} p\left(x_{i} \mid y, x_{1}, \ldots, x_{i-1}\right)$

$$
p\left(x_{i} \mid y, x_{1}, x_{2}, \ldots, x_{i-1}\right)=p\left(x_{i} \mid y\right)
$$

Assumes feature i is independent of the the other features given the label

Generative Story
To classify with a model, we're given an example and we obtain
the probability
We can also ask how a given model would generate an example
This is the "generative story" for a model
Looking at the generative story can help understand the model
We also can use generative stories to help develop a model

9

Bernoulli NB generative story
 $$
p(y) \prod_{j=1}^{m} p\left(w_{j} \mid y\right)
$$

1. Pick a label according to $p(y)$ roll a biased, num_labels-sided die
2. For each word in your vocabulary:

Flip a biased coin:
if heads, include the word in the text
if tails, don't include the word

Bernoulli NB generative story

$$
p(y) \prod_{j=1}^{m} p\left(x_{j} \mid y\right)
$$

1. Pick a label according to $p(y)$ roll a biased, num_labels-sided die
2. For each feature:

Flip a biased coin:
if heads, include the feature
if tails, don't include the feature
What does this mean for text classification, assuming unigram features?

10

Bernoulli NB
Pros
$\quad \square$ Easy to implement
\square Fast!
\square Can be done on large data sets
Cons
\square Naïve Bayes assumption is generally not true
\square Performance isn't as good as other models
\square For text classification (and other sparse feature
domains) the $\mathrm{p}\left(\mathrm{x}_{\mathrm{i}}=0 \mid y\right)$ can be problematic

12

13

15

14

16

17

19

18

20

21

23

24

25

27

26

28

$$
\begin{aligned}
& \text { What if I told you } 1 \text { was twice as likely as the others? } \\
& \begin{array}{lllllll}
2 / 7 & 1 / 7 & 1 / 7 & 1 / 7 & 1 / 7 & 1 / 7
\end{array}
\end{aligned}
$$

29

A digression: rolling dice					
1. What is the probability of rolling a 1 and a 5 (in any order)? 2. Two 1 s and a 5 (in any order)? 3. Five 1 s and two 5 s (in any order)?					
1/4	1/8	1/8	1/4	1/8	1/8
1	2	3	4	5	6

31

30

32

33

35

34
Back to words...
Why the digression?
$p\left(x_{1}, x_{2}, \ldots, x_{m} \mid \theta_{1}, \theta_{2}, \ldots, \theta_{m}\right)=\frac{n!}{\prod_{j=1}^{m} x_{j}!\prod_{j=1}^{m} \theta_{j}^{x_{j}}}$
Drawing words from a bag is the same as rolling a die!
number of sides = number of words in the vocabulary

36

37

39

40

41

43

44

45

47

Multinomial vs. Bernoulli?

Handles word frequency

Given enough data, tends to performs better

46

48

Basic steps for probabilistic modeling	
Step 1: pick a model	$\begin{array}{l}\text { Probabilistic models } \\ \text { Step 2: figure out how to } \\ \text { estimate the probabilities for } \\ \text { the model }\end{array}$
$\begin{array}{l}\text { Which model do we use, } \\ \text { i.e. how do we calculate } \\ \text { p(feature, label)? }\end{array}$	
$\begin{array}{l}\text { Step } 3 \text { (optional): deal with } \\ \text { overfitting }\end{array}$	$\begin{array}{l}\text { How do train the model, } \\ \text { i.e. how to we we } \\ \text { estimate the probabilities } \\ \text { for the model? }\end{array}$

overfitting?\end{array}\right]\)

49

50

52

53

55

54

56

