

1

3

2

4

5

7

Probabilistic models

Probabilistic models define a probability distribution over features and labels:

6

Probabilistic models: classification	
	Probabilistic models define a probability distribution over features and labels:
	Given an unlabeled example: yellow, curved, no leaf, boz predict the label How do we use a probabilistic model for classification/prediction?

8

9

Probabilistic models

Probabilities are nice to work with
\square range between 0 and 1
\square can combine them in a well understood way
\square lots of mathematical background/theory

Provide a strong, well-founded groundwork

- Allow us to make clear decisions about things like smoothing
- Tend to be much less "heuristic"
- Models have very clear meanings

10

Probabilistic models: big questions

1. Which model do we use, i.e. how do we calculate p (feature, label)?
2. How do train the model, i.e. how to we we estimate the probabilities for the model?
3. How do we deal with overfitting (i.e. smoothing)?

Basic steps for probabilistic modeling	
Step 1: pick a model	Probabilistic models Which model do we use, i.e. how do we calculate p(feature, label)?
Step 2: figure out how to estimate the probabilities for the model	How do train the model, i.e. how to we we estimate the probabilities for the model?
Step 3 (optional): deal with overfitting	How do we deal with overfitting?

13

15

14

Some math	
p(features, label)	$=p\left(x_{1}, x_{2}, \ldots, x_{m}, y\right)$
	$=p(y) p\left(x_{1}, x_{2}, \ldots, x_{m} \mid y\right)$
What rule?	

16

Some math	
$p($ features,label $)=p\left(x_{1}, x_{2}, \ldots, x_{m}, y\right)$	
	$=p(y) p\left(x_{1}, x_{2}, \ldots, x_{m} \mid y\right)$
	$=p(y) p\left(x_{1} \mid y\right) p\left(x_{2}, \ldots, x_{m} \mid y, x_{1}\right)$
	$=p(y) p\left(x_{1} \mid y\right) p\left(x_{2} \mid y, x_{1}\right) p\left(x_{3}, \ldots, x_{m} \mid y, x_{1}, x_{2}\right)$
	$=p(y) \prod_{j=1}^{m} p\left(x_{i} \mid y, x_{1}, \ldots, x_{i-1}\right)$

17

Full distribution tables

All possible combination of features!

Table size: $2^{7000}=$?

Step 1: pick a model

$p($ features, label $)=p(y) \prod_{j=1}^{m} p\left(x_{i} \mid y, x_{1}, \ldots, x_{i-1}\right)$
So, far we have made NO assumptions about the data

$$
p\left(x_{m} \mid y, x_{1}, x_{2}, \ldots, x_{m-1}\right)
$$

How many entries would the probability distribution table have if we tried to represent all possible values and we had 7000 binary features?

18

20

21
Naïve Bayes assumption

$$
p(\text { features, label })=p(y) \prod_{j=1}^{m} p\left(x_{i} \mid y, x_{1}, \ldots, x_{i-1}\right)
$$

$$
p\left(x_{i} \mid y, x_{1}, x_{2}, \ldots, x_{i-1}\right)=p\left(x_{i} \mid y\right)
$$

What does this assume?

Step 1: pick a model

$$
p(\text { features,label })=p(y) \prod_{j=1}^{m} p\left(x_{i} \mid y, x_{1}, \ldots, x_{i-1}\right)
$$

So, far we have made NO assumptions about the data
Model selection involves making assumptions about the data

We've done this before, n -gram language model, parsing, etc.

These assumptions allow us to represent the data more compactly and to estimate the parameters of the model

Naïve Bayes assumption

$$
p(\text { features,label })=p(y) \prod_{j=1}^{m} p\left(x_{i} \mid y, x_{1}, \ldots, x_{i-1}\right)
$$

$$
p\left(x_{i} \mid y, x_{1}, x_{2}, \ldots, x_{i-1}\right)=p\left(x_{i} \mid y\right)
$$

Assumes feature i is independent of the the other features given the label

Is this true for text, say, with unigram features?

24

Naïve Bayes assumption

$$
p\left(x_{i} \mid y, x_{1}, x_{2}, \ldots, x_{i-1}\right)=p\left(x_{i} \mid y\right)
$$

For most applications, this is not true!
For example, the fact that "San" occurs will probably make it more likely that "Francisco" occurs

However, this is often a reasonable approximation:

$$
p\left(x_{i} \mid y, x_{1}, x_{2}, \ldots, x_{i-1}\right) \approx p\left(x_{i} \mid y\right)
$$

$p(x \mid y)$

Binary features (aka, Bernoulli Naïve Bayes) :

$$
p\left(x_{j} \mid y\right)=\left\{\begin{array}{cc}
\theta_{j} & \text { if } x_{i}=1 \\
1-\theta_{j} & \text { otherwise }
\end{array} \quad\right. \text { biased coin toss! }
$$

Naïve Bayes model

$$
\begin{aligned}
p(\text { features,label }) & =p(y) \prod_{j=1}^{m} p\left(x_{j} \mid y, x_{1}, \ldots, x_{j-1}\right) \\
& =p(y) \prod_{j=1}^{m} p\left(x_{j} \mid y\right) \quad \text { naïve Bayes assumption }
\end{aligned}
$$

$p\left(x_{i} \mid y\right)$ is the probability of a particular feature value given the label
How do we model this?

- for binary features (e.g., "banana" occurs in the text)
for discrete features (e.g., "banana" occurs x_{i} times)
for real valued features (e.g, the text contains x_{i} proportion of verbs)

26

28

29

31

30

32

33

35

34

36

How good is this model for text classification?

37

39

38

Generative Story
To classify with a model, we're given an example and we obtain
the probability
We can also ask how a given model would generate an example
This is the "generative story" for a model
Looking at the generative story can help understand the model
We also can use generative stories to help develop a model

40

41

1. Pick a label according to $p(y)$ roll a biased, num_labels-sided die
2. For each word in your vocabulary:

Flip a biased coin:
if heads, include the word in the text
if tails, don't include the word

43

42

Bernoulli NB
$p(y) \prod_{j=1}^{m} p\left(x_{j} \mid y\right)$
Pros/cons?

44

Bernoulli NB
Pros
$\quad \square$ Easy to implement
$\quad \square$ Fast!
\square Can be done on large data sets
Cons
\square Naïve Bayes assumption is generally not true
\square Performance isn't as good as other models
\square For text classification (and other sparse feature
domains) the $\mathrm{p}\left(\mathrm{x}_{\mathrm{i}}=0 \mid \mathrm{y}\right)$ can be problematic

45

47

46

48

49

51

52

53

55

56

57

