

1

3

2

Training without alignments

Initially assume a $p(f \mid e)$ are equally probable

Repeat:

- Enumerate all possible alignments
- Calculate how probable the alignments are under the current model (i.e. p(f|e))
- Recalculate $p(f \mid e)$ using counts from all alignments, weighted by how probable they are

5

7

EM alignment

E-step

- Enumerate all possible alignments
- Calculate how probable the alignments are under the current model (i.e. p(f|e))

M-step

- Recalculate $p(f \mid e)$ using counts from all alignments, weighted by how probable they are
(Note: theoretical algorithm)

6

8

9

11

10

12

Implementation details

For |E| English words and |F| foreign words, how many alignments are there?

Repeat:

E-step

Enumerate all possible alignments

- Calculate how probable the alignments are under the current model (i.e. p(f|e))
M-step
- Recalculate $p(f \mid e)$ using counts from all alignments, weighted by how probable they are

13

Thought experiment

El viejo está feliz porque ha pescado muchos veces.

The sharks await.
Su mujer habla con él. Los tiburones esperan.

$$
p\left(f_{i} \mid e_{a_{i}}\right)=\frac{\operatorname{count}(f \text { aligned-to } e)}{\operatorname{count}(e)} \quad \begin{aligned}
& \mathrm{p}(\mathrm{el} \mid \text { the })=0.5 \\
& \mathrm{p}(\text { Los } \mid \text { the })=0.5
\end{aligned}
$$

15

Implementation details

Each foreign word can be aligned to any of the English words (or NULL)
$(|E|+1)^{|F|}$

Repeat:
E-step
Enumerate all possible alignments

- Calculate how probable the alignments are under the current model (i.e. p(f|e))

M-step

- Recalculate $p(f \mid e)$ using counts from all alignments, weighted by how probable they are

14

If we had the alignments

Input: corpus of English/Foreign sentence pairs along with alignment
for (E, F) in corpus:
for aligned words (e, f) in pair (E, F):
count(e,f) += 1
count(e) += 1
for all (e,f) in count:
$p(f \mid e)=\operatorname{count}(e, f) / \operatorname{count}(e)$

16

17

Thought experiment \#2

19

If we had the alignments

Input: corpus of English/Foreign sentence pairs along with alignment

```
for (E,F) in corpus: for (E, F) in corpus
    for aligned words (e, f) in pair (E,F):
        count(e,f) += 1
        count(e) += 1
        for ( E,F) in corp
        forfin F:
        if f aligned-to e:
                                if f aligned-to e:
                                count(e,f) +=1
                                    count(e) += 1
            Are these equivalent?
```

for all (e,f) in count:
$p(f \mid e)=\operatorname{count}(e, f) / \operatorname{count}(e)$

18

Without the alignments

if f aligned-to e :
count(e,f) $+=1$
count(e) $+=1$

$p(f \rightarrow \mathrm{e})$: probability that f is aligned to e in this pair
count(e$)+=p(f \rightarrow \mathrm{e})$

Key: use expected counts (i.e., how likely based on the current model), rather than actual counts

Without alignments

$p(f \rightarrow \mathrm{e})$: probability that f is aligned to e in this pair
abc
yz

What is $p(y \rightarrow \mathrm{a})$?
Put another way, of all things that y could align to in this sentence, how likely is it to be a?

21

23

Without alignments

$p(f \rightarrow \mathrm{e})$: probability that f is aligned to e in this pair

Of all things that y could align to, how likely is it to be a :

$$
\frac{p(y \mid a)}{p(y \mid a)+p(y \mid b)+p(y \mid c)}
$$

Without alignments

$p(f \rightarrow \mathrm{e})$: probability that f is aligned to e in this pair
$a b c$
$y z$

Of all things that y could align to, how likely is it to be a : $p(y \mid a)$
Does that do it?
No! $p(y \mid a)$ is how likely y is to align to a over the whole data set.
22

Without the alignments

Input: corpus of English/Foreign sentence pairs along with alignment
for (E, F) in corpus:
for e in E : for f in F :
$p(f \rightarrow \mathrm{e})=\mathrm{p}(\mathrm{f} \mid \mathrm{e}) / \sum_{\text {ein } E} p(f \mid e)$
count(e, f$)+=p(f \rightarrow \mathrm{e})$
count $(\mathrm{e})+=p(f \rightarrow \mathrm{e})$
for all (e,f) in count:
$p(f \mid e)=\operatorname{count}(e, f) / \operatorname{count}(e)$

24

EM: without the alignments

Input: corpus of English/Foreign sentence pairs along with alignment
for some number of iterations:
for (E, F) in corpus:
for e in E :
for f in F :
$p(f \rightarrow \mathrm{e})=\mathrm{p}(\mathrm{f} \mid \mathrm{e}) / \sum_{e \text { in } E} p(f \mid e)$
count $(\mathrm{e}, \mathrm{f})+=p(f \rightarrow \mathrm{e})$
count(e) $+=p(f \rightarrow \mathrm{e})$
for all (e,f) in count:
$p(f \mid e)=\operatorname{count}(e, f) / \operatorname{count}(e)$

25

EM: without the alignments

Input: corpus of English/Foreign sentence pairs along with alignment
for some number of iterations:
for (E, F) in corpus:
for e in E :
for f in F :
$\underset{\text { count }(\mathrm{e}, \mathrm{f})+=p(f(f \rightarrow \mathrm{e})}{p(f)}=\mathrm{p}(\mathrm{f} \mid \mathrm{e}) / \sum_{e} \mathrm{in}_{\mathrm{E}} p(f \mid e)$
count $(\mathrm{e}, \mathrm{f})+=p(f \rightarrow \mathrm{e})$
count $(\mathrm{e})+=p(f \rightarrow \mathrm{e})$
for all (e,f) in count: $\mathrm{p}(\mathrm{f} \mid \mathrm{e})=\operatorname{count}(\mathrm{e}, \mathrm{f}) / \operatorname{count}(\mathrm{e})$

Where are the E and M steps?

EM: without the alignments

Input: corpus of English/Foreign sentence pairs along with alignment
for some number of iterations:
for (E, F) in corpus:
for e in E :
for f in F :
$p(f \rightarrow \mathrm{e})=\mathrm{p}(\mathrm{f} \mid \mathrm{e}) / \sum_{e \text { in }} p(f \mid e)$
count $(\mathrm{e}, \mathrm{f})+=p(f \rightarrow \mathrm{e})$
count $(\mathrm{e})+=p(f \rightarrow \mathrm{e})$
for all (e,f) in count:
$p(f \mid e)=\operatorname{count}(e, f) / \operatorname{count}(e)$

26

EM: without the alignments
Input: corpus of English/Foreign sentence pairs along with alignment
for some number of iterations:
for (E, F) in corpus:
for e in E :
for f in F

$$
p(f \rightarrow \mathrm{e})=\mathrm{p}(\mathrm{f} \mid \mathrm{e}) / \sum_{e \text { in }} p(f \mid e)
$$

for all (e,f) in count:
$p(f \mid e)=\operatorname{count}(e, f) / \operatorname{count}(e)$
Calculate how probable the alignments are under the current model (i.e. p(f|e))

28

EM: without the alignments

Input: corpus of English/Foreign sentence pairs along with alignment

```
~ some number of iterations:
    for (E,F) in corpus:
        fore in E:
            count(e,f) += p(f->\textrm{e})
```

 for all (e,f) in count:
 \(p(f \mid e)=\operatorname{count}(\mathrm{e}, \mathrm{f}) / \operatorname{count}(\mathrm{e})\)
 Recalculate \(p(f \mid e)\) using counts from all alignments, weighted
 by how probable they are
 29

Benefits of word-level model

Rarely used in practice for modern MT system

Maria no dió una botefada a la bruja verde

Two key side effects of training a word-level model:

- Word-level alignment
- $p(f \mid e)$: translation dictionary How do I get this?

Word alignment

NULL

Sometimes foreign words don't have a direct correspondence to an English word

Adding a NULL word allows for p(f | NULL), i.e. words that appear, but are not associated explicitly with an English word

Implementation: add "NULL" (or some unique string representing NULL) to each of the English sentences, often at the beginning of the sentence

p (casa \mid NULL $)$	$1 / 3$
$p($ verde \mid NULL $)$	$1 / 3$
$p($ la \mid NULL $)$	$1 / 3$

30

33

35

Word-level alignment

$\operatorname{alignment}(E, F)=\arg _{A} \max p(A, F \mid E)$

Which for IBM model 1 is:
$\operatorname{alignment}(E, F)=\arg _{A} \max \prod_{i=1}^{|F|} p\left(f_{i} \mid e_{a_{i}}\right)$
Given a model (i.e. trained $p(f \mid e)$), how do we find this?
Align each foreign word (f in F) to the English word (e in E) with highest $p(f \mid e)$

$$
a_{i}=\arg _{j: 1-|E|} \max p\left(f_{i} \mid e_{j}\right)
$$

34

36

37

Problems for Statistical MT

Preprocessing

Language modeling

Translation modeling

Decoding

Parameter optimization

Evaluation

39

Problems for Statistical MT
Preprocessing
Language modeling
Translation modeling
Decoding
Parameter optimization
Evaluation

38

Word-alignment Evaluation

System:
The old man is happy. He has fished many times.
El viejo está feliz porque ha pescado muchos veces.
Human
The old man is happy. He has fished many times.

$$
\text { Precision: } \frac{6}{7} \quad \text { Recall: } \frac{6}{10}
$$

41

43

Phrasal translation model

The models define probabilities over inputs $p(f \mid e)$

1. Sentence is divided into phrases
2. Phrases are translated (avoids a lot of weirdness from word-level model)

42

Phrase table	
natuerlich	
Translation	Probability
of course	0.5
naturally	0.3
of course,	0.15
, of course,	0.05

44

45

Advantages of Phrase-Based

Many-to-many mappings can handle noncompositional phrases

Easy to understand
Local context is very useful for disambiguating

- "Interest rate" \rightarrow...
- "Interest in" \rightarrow...

The more data, the longer the learned phrases

- Sometimes whole sentences!

47

Phrasal translation model

The models define probabilities over inputs $p(f \mid e)$

Advantages?

46

48

49

51

50

Problems for Statistical MT

Evaluation

52

MT Evaluation

How do we do it?

What data might be useful?

53

Automatic Evaluation

Common NLP/machine learning/AI approach

55

Automatic Evaluation

Reference (human) translation
The U.S. island of Guam is
maintaining a high state of alert after the Guam airport and its offices both received an e-mail from someone calling himself the Saudi Arabian Osama bin Laden and threatening a biological/chemical attack against public places such as the airport

Machine translation:

The American [?] international airport and its the office all receives one calls self the sand Arab rich business [?] and so on electronic mail , which sends out The threat will be able after public place and so on the airport to start the biochemistry attack, [?] highly alerts after the maintenance.

Machine translation 2:
United States Office of the Guam International Airport and were received by a man claiming to be Saudi Arabian businessman Osama bin
Laden, sent emails, threats to airports and other public places will launch a biological or chemical attack, remain on high alert in Guam.

Ideas?

57

N -gram precision example

Candidate 1: It is a guide to action which ensures that the military always obey the commands of the party.

Reference 1: It is a guide to action that ensures that the military will forever heed Party commands.
Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party.
Reference 3: It is the practical guide for the army always to heed directions of the party.

What percentage of machine n-grams can be found in the reference translations? Do unigrams, bigrams and trigrams.

Multiple Reference Translations

58

N -gram precision example

Candidate 1: It is a guide to action which ensures that the military always obey the commands of the party.

Reference 1: It is a guide to action that ensures that the military will forever heed Party commands.
Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party.
Reference 3: It is the practical guide for the army always to heed directions of the party.

Unigrams: 17/18

60

N -gram precision example

Candidate 1: It is a guide to action which ensures that the military
always obey the commands of the party.
Reference 1: It is a guide to action that ensures that the military will forever heed Party commands.
Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party.
Reference 3: It is the practical guide for the army always to heed directions of the party.

Unigrams: 17/18
Bigrams: 10/17

61

N -gram precision example 2

Candidate 2: It is to ensure the army forever hearing the directions guide that party commands.

Reference 1: It is a guide to action that ensures that the military will forever heed Party commands.

Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party.
Reference 3: It is the practical guide for the army always to heed directions of the party.

N -gram precision example

Candidate 1: It is a guide to action which ensures that the military
always obey the commands of the party.
Reference 1: It is a guide to action that ensures that the military will forever heed Party commands.
Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party.
Reference 3: It is the practical guide for the army always to heed directions of the party.

Unigrams: 17/18
Bigrams: 10/17
Trigrams: 7/16

62

Reference 1: It is a guide to action that ensures that the military will forever heed Party commands.

Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party.
Reference 3: It is the practical guide for the army always to heed directions of the party.

Unigrams: 12/14

64

N -gram precision example 2

Candidate 2: It is to ensure the army forever hearing the directions
guide that party commands.

Reference 1: It is a guide to action that ensures that the military will forever heed Party commands.
Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party.
Reference 3: It is the practical guide for the army always to heed directions of the party.

Unigrams: 12/14
Bigrams: 4/13

65

N-gram precision

Candidate 1: It is a guide to action which ensures that the

 military always obey the commands of the party.Unigrams: 17/18
Bigrams: 10/17
Trigrams: 7/16

Candidate 2: It is to ensure the army forever hearing the directions guide that party commands.
Unigrams: 12/14
Bigrams: 4/13
Trigrams: 1/12
Any problems/concerns?

67

N -gram precision example 2

Candidate 2: It is to ensure the army forever hearing the directions
guide that party commands.

Reference 1: It is a guide to action that ensures that the military will forever heed Party commands.
Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party.
Reference 3: It is the practical guide for the army always to heed directions of the party.

Unigrams: 12/14
Bigrams: 4/13
Trigrams: 1/12

66

N -gram precision example

Candidate 3: the
Candidate 4: It is a

Reference 1: It is a guide to action that ensures that the military will forever heed Party commands.
Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party.
Reference 3: It is the practical guide for the army always to heed directions of the party.

What percentage of machine n-grams can be found in the reference translations? Do unigrams, bigrams and trigrams

68

69

BLEU Tends to Predict Human Judgments

Human Judgments

BLEU: Problems?

Doesn' t care if an incorrectly translated word is a name or a preposition

- gave it to Albright	(reference)
- gave it at Albright	(translation \#1)
- gave it to altar	(translation \#2)

What happens when a program reaches human level performance in BLEU but the translations are still bad? - maybe sooner than you think ...

71

