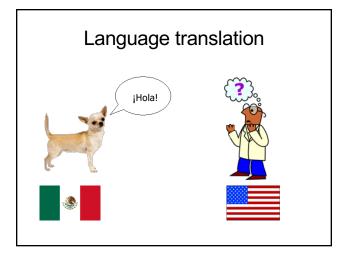
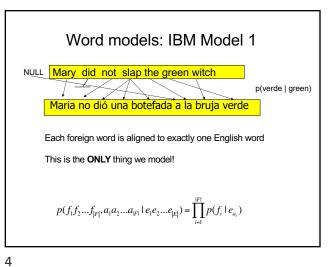
Mad	chine Transl Concluded	
	David Kauchak CS159 – Fall 2020	
	Some slides adapted from	
Philipp Koehn	Kevin Knight	Dan Klein
School of Informatics University of Edinburgh	USC/Information Sciences Institute USC/Computer Science Department	Computer Science Department UC Berkeley


Admin


Assignment 5b

Assignment 6 available

Quiz 3: 11/10

2

Training without alignments

Initially assume a p(f|e) are equally probable

Repeat:

- Enumerate all possible alignments

- Calculate how probable the alignments are under the current model (i.e. p(f|e))
- Recalculate p(f|e) using counts from all alignments, weighted by how probable they are

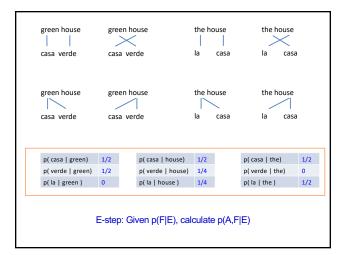
(Note: theoretical algorithm)

EM alignment

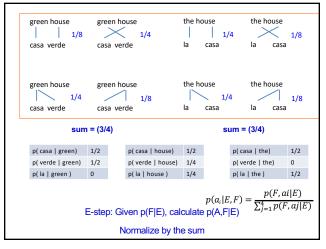
E-step

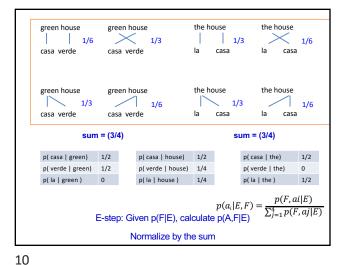
- Enumerate all possible alignments
- Calculate how probable the alignments are under the current model (i.e. p(f|e))

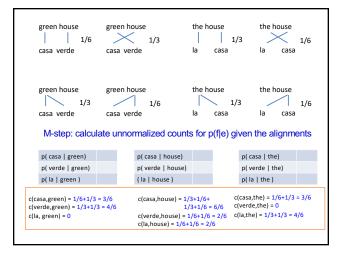
M-step

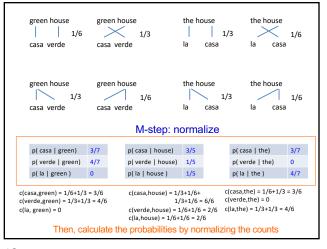

6

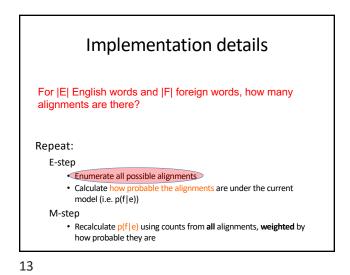
8

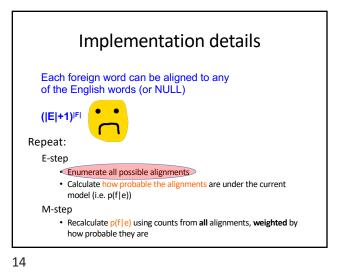

 Recalculate p(f|e) using counts from all alignments, weighted by how probable they are

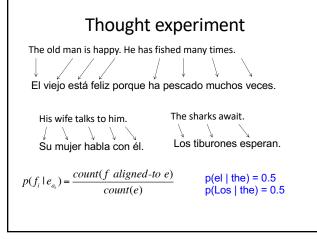

(Note: theoretical algorithm)

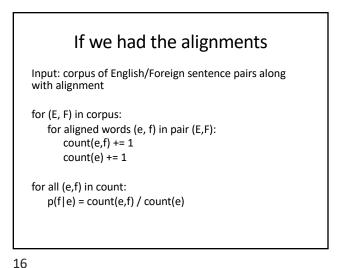

5

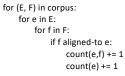


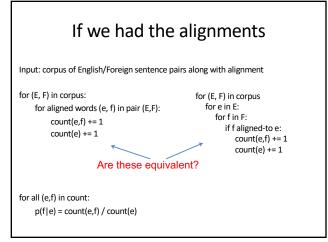

1/8 casa verde	ँ >	n house 1/4 verde	the house	/4 the house /4 la casa	1/8
green house 1/4 casa verde	~	n house 1/8 verde	the house	the house /4 la casa	1/8
p(casa green)	1/2	p(casa house)	1/2	p(casa the)	1/2
p(verde green)	1/2	p(verde house)	1/4	p(verde the)	0
p(la green)	0	p(la house)	1/4	p(la the)	1/2

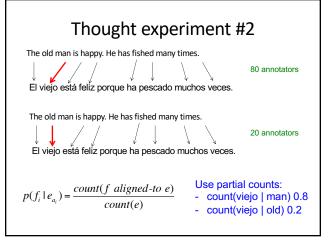


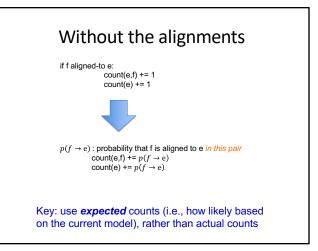












for all (e,f) in count: p(f|e) = count(e,f) / count(e)

Without alignments

 $p(f \rightarrow e)$: probability that f is aligned to e *in this pair*

abc

y z

What is $p(y \rightarrow a)$?

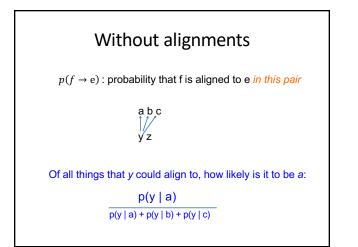
Put another way, of all things that y could align to in this sentence, how likely is it to be a?

21

Without alignments

 $p(f \rightarrow e)$: probability that f is aligned to e *in this pair*

abc


уz

Of all things that *y* could align to, how likely is it to be *a*:

p(y | a)

 $\label{eq:boost} \begin{array}{l} \mbox{Does that do it?} \\ \mbox{No! } p(y \mid a) \mbox{ is how likely } y \mbox{ is to align to a over the whole data set.} \end{array}$

22

Without the alignments

Input: corpus of English/Foreign sentence pairs along with alignment

for (E, F) in corpus: for e in E: for f in F: $p(f \rightarrow e) = p(f|e) / \sum_{e \text{ in } E} p(f|e)$ $count(e,f) += p(f \rightarrow e)$ $count(e) += p(f \rightarrow e)$

for all (e,f) in count: p(f|e) = count(e,f) / count(e)

EM: without the alignments

Input: corpus of English/Foreign sentence pairs along with alignment

for some number of iterations:

for (E, F) in corpus: for e in E: for f in F: $p(f \rightarrow e) = p(f|e) / \sum_{e \text{ in } E} p(f|e)$ $count(e,f) += p(f \rightarrow e)$ $count(e) += p(f \rightarrow e)$

for all (e,f) in count: p(f|e) = count(e,f) / count(e)

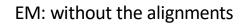
25

EM: without the alignments

Input: corpus of English/Foreign sentence pairs along with alignment

for some number of iterations: for (E, F) in corpus: for e in E: for f in F: $p(f \rightarrow e) = p(f|e) / \sum_{e \text{ in } E} p(f|e)$ $count(e,f) += p(f \rightarrow e)$ $count(e) += p(f \rightarrow e)$

for all (e,f) in count: p(f|e) = count(e,f) / count(e)


26

EM: without the alignments Input: corpus of English/Foreign sentence pairs along with alignment for some number of iterations: for (E, F) in corpus: for e in E: for f in F: $p(f \rightarrow e) = p(f|e)/\sum_{e \ in E} p(f|e)$ $count(e, f) + = p(f \rightarrow e)$ for all (e,f) in count: p(f|e) = count(e, f) / count(e)Where are the E and M steps?

Input: corpus of English/Foreign sentence pairs along with alignment for some number of iterations: for (E, F) in corpus: for e in E: for f in F: $p(f \rightarrow e) = p(f|e) / \sum_{e \text{ in } E} p(f|e)$ $count(e,f) += p(f \rightarrow e)$ for all (e,f) in count:

EM: without the alignments

Calculate how probable the alignments are under the current model (i.e. p(fje))

Input: corpus of English/Foreign sentence pairs along with alignment

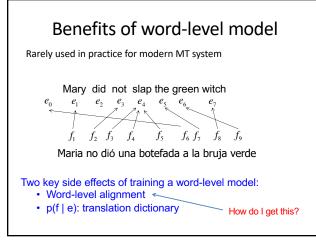
for some number of iterations:
for (E, F) in corpus:
for e in E:
for f in F:
$p(f \to e) = p(f e) / \sum_{e \text{ in } E} p(f e)$ $count(e,f) + p(f \to e)$ $count(e) + p(f \to e)$
for all (e,f) in count: p(f e) = count(e,f) / count(e)

Recalculate $p(\ensuremath{\textit{p}}\xspace)$ using counts from all alignments, weighted by how probable they are

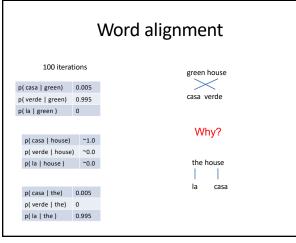
29

Sometimes foreign words don't have a direct correspondence to an English word

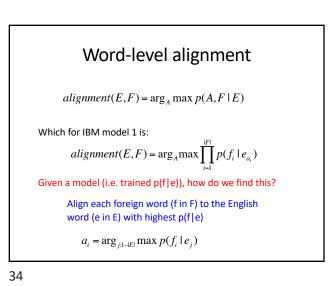
Adding a NULL word allows for $p(f \mid NULL)$, i.e. words that appear, but are not associated explicitly with an English word

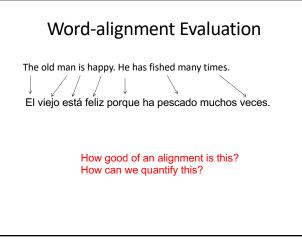

Implementation: add "NULL" (or some unique string representing NULL) to each of the English sentences, often at the beginning of the sentence

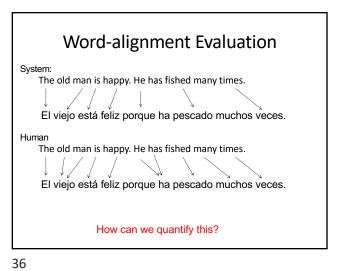
 p(casa | NULL)
 1/3

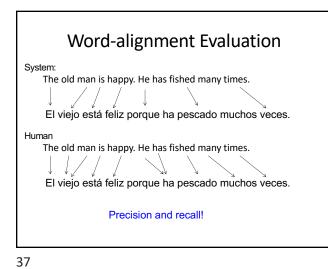

 p(verde | NULL)
 1/3

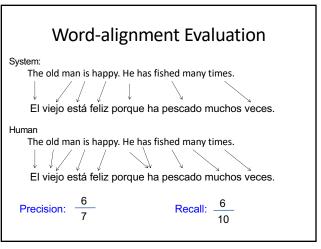
 p(la | NULL)
 1/3

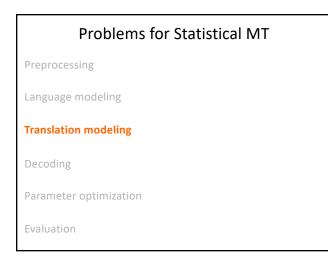

30

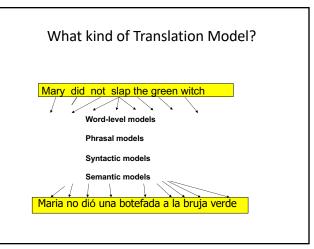


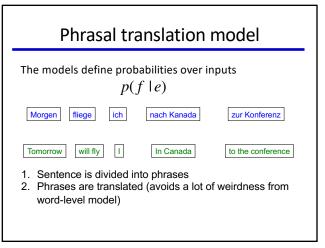

Word alignment					
100 iterations		green house			
p(casa green) p(verde green)	0.005 0.995	casa verde			
p(la green)	0				
		How should these be aligned?			
p(casa house)	~1.0	-			
p(verde house	e) ~0.0				
p(la house)	~0.0	the house			
		la casa			
p(casa the)	0.005				
p(verde the)	0				
p(la the)	0.995				

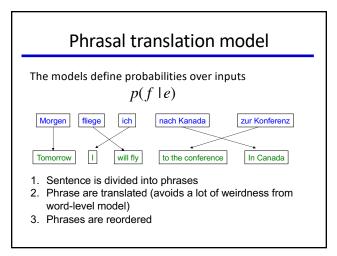


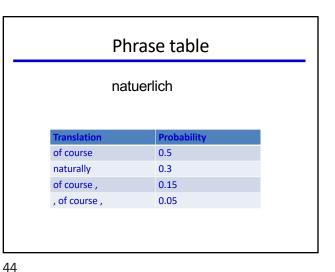




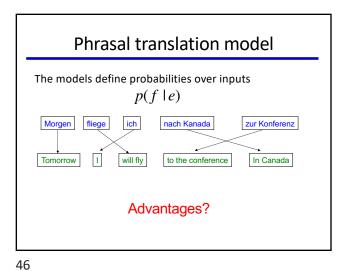


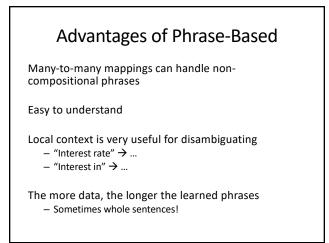


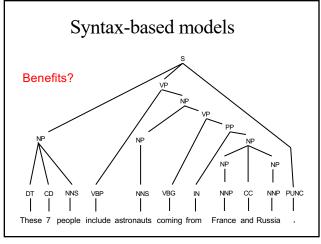


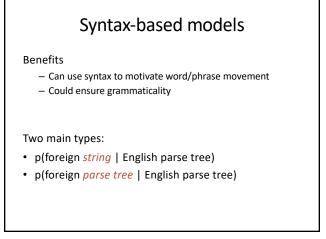


Phrasal translation model
The models define probabilities over inputs $p(f \mid e)$
Morgen fliege ich nach Kanada zur Konferenz
1. Sentence is divided into phrases
11

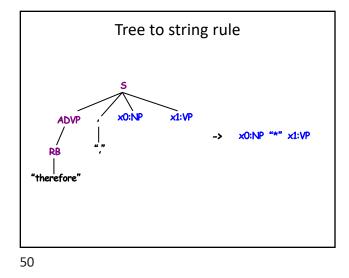


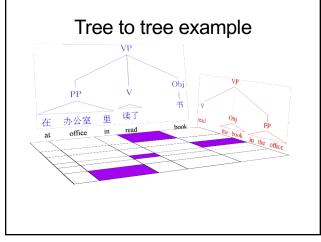


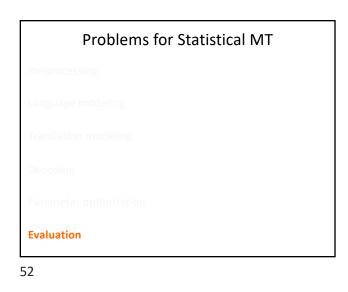


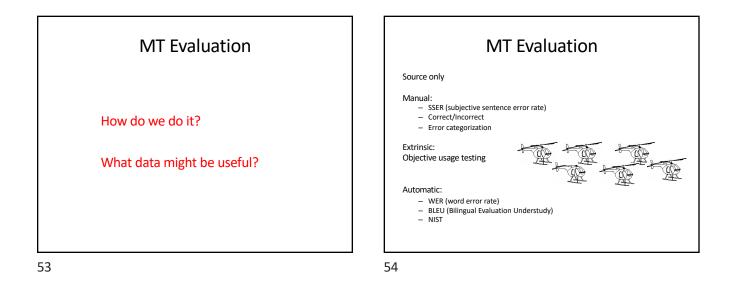

.

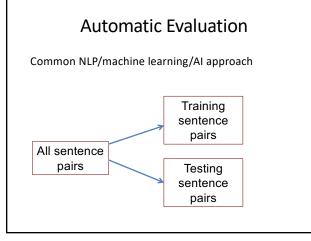
Pł	nrase table	
den '	Vorschlag	
Translation	Probability	
the proposal	0.6227	
's proposal	0.1068	
a proposal	0.0341	
the idea	0.0250	
this proposal	0.0227	
proposal	0.0205	
of the proposal	0.0159	
the proposals	0.0159	
the suggestions	0.0114	

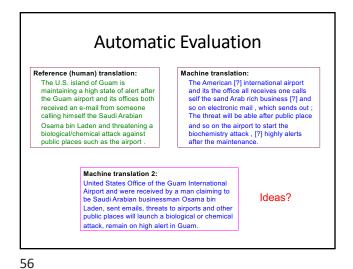


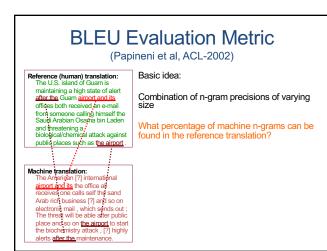


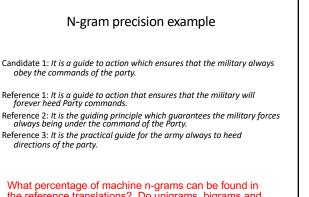


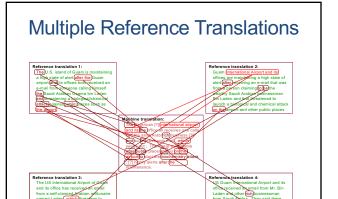


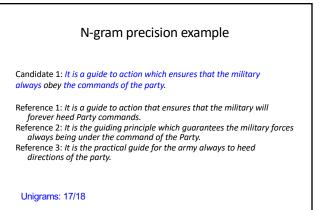












What percentage of machine n-grams can be found in the reference translations? Do unigrams, bigrams and trigrams.

N-gram precision example

Candidate 1: It is a guide to action which ensures that the military

always obey the commands of the party.

Reference 1: It is a guide to action that ensures that the military will forever heed Party commands. Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party. Reference 3: It is the practical guide for the army always to heed directions of the party.

Unigrams: 17/18 Bigrams: 10/17

61

N-gram precision example

Candidate 1: It is a guide to action which ensures that the military

always obey the commands of the party.

Reference 1: It is a guide to action that ensures that the military will forever heed Party commands.
Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party.
Reference 3: It is the practical guide for the army always to heed directions of the party.

Unigrams: 17/18 Bigrams: 10/17 Trigrams: 7/16

62

N-gram precision example 2

Candidate 2: It is to ensure the army forever hearing the directions guide that party commands.

Reference 1: It is a guide to action that ensures that the military will forever heed Party commands.

Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party.

Reference 3: It is the practical guide for the army always to heed directions of the party.

N-gram precision example 2
Candidate 2: It is to ensure the army forever hearing the directions guide that party commands.
Reference 1: It is a guide to action that ensures that the military will forever heed Party commands.
 Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party. Reference 3: It is the practical guide for the army always to heed directions of the party.
Unigrams: 12/14

63

N-gram precision example 2

Candidate 2: It is to ensure the army forever hearing the directions

guide that party commands.

Reference 1: It is a guide to action that ensures that the military will forever heed Party commands.
Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party.
Reference 3: It is the practical guide for the army always to heed directions of the party.

Unigrams: 12/14 Bigrams: 4/13

65

N-gram precision example 2

Candidate 2: It is to ensure the army forever hearing the directions

guide that party commands.

Reference 1: It is a guide to action that ensures that the military will forever heed Party commands.

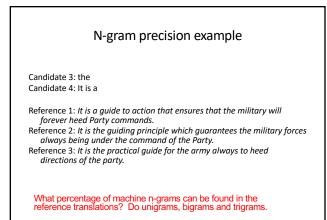
Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party.

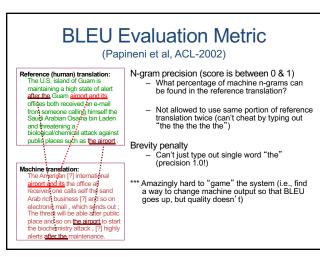
Reference 3: It is the practical guide for the army always to heed directions of the party.

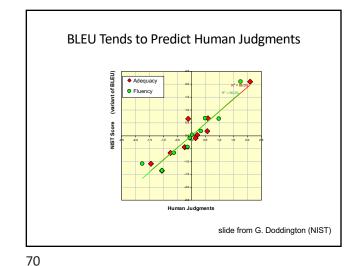
Unigrams: 12/14 Bigrams: 4/13 Trigrams: 1/12

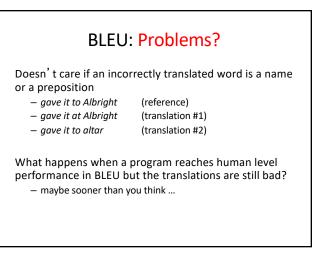
66

N-gram precision


Candidate 1: It is a guide to action which ensures that the military always obey the commands of the party.


Unigrams: 17/18 Bigrams: 10/17 Trigrams: 7/16


Candidate 2: It is to ensure the army forever hearing the directions guide that party commands.


Unigrams: 12/14 Bigrams: 4/13 Trigrams: 1/12

Any problems/concerns?

