

1

3

Admin

Assignment 4a

\square Solutions posted

- If you're still unsure about questions 3 and 4, come talk to me.

Assignment 4b

Grading

Quiz \#2 next Thursday covering material through 10/6

2

4

5

7

6

8

9

Text similarity

There are many different notions of similarity depending on the domain and the application

Today, we'll look at some different tools

There is no one single tool that works in all domains

11

Text similarity: application

Automatic grader

Question: what is a variable?
Answer: a location in memory that can store a value
How good are:

- a variable is a location in memory where a value can be stored
- a named object that can hold a numerical or letter value
- it is a location in the computer 's memory where it can be stored for use by a program
- a variable is the memory address for a specific type of stored data or from a mathematical perspective a symbol representing a fixed definition with changing values
- a location in memory where data can be stored and retrieved

10
Text similarity approaches
A: When the defendant and his lawyer walked into the
court, some of the victim supporters turned their backs
to him.
B: When the defendant walked into the courthouse with
his attorney, the crowd truned their backs on him.
How can we do this?

12

The basics: text overlap

Texts that have overlapping words are more similar

A: When the defendant and his lawyer walked into the court, some of the victim supporters turned their backs to him.

B: When the defendant walked into the courthouse with his attorney, the crowd truned their backs on him.

13

Word overlap problems

Doesn't take into account word order
Related: doesn't reward longer overlapping sequences
A: defendant his the When lawyer into walked backs him the court, of supporters and some the victim turned their backs him to.

B: When the defendant walked into the courthouse with his attorney, the crowd truned their backs on him.
$\operatorname{sim}(\mathrm{T} 1, \mathrm{~T} 2)=11$

15

Word overlap: a numerical score

Idea 1: number of overlapping words

A: When the defendant and his lawyer walked into the court, some of the victim supporters turned their backs to him.

B: When the defendant walked into the courthouse with his attorney, the crowd truned their backs on him.
$\operatorname{sim}(\mathrm{T} 1, \mathrm{~T} 2)=11$ problems?

14

Word overlap problems

Doesn't take into account length
A: When the defendant and his lawyer walked into the court, some of the victim supporters turned their backs to him.

B: When the defendant walked into the courthouse with his attorney, the crowd truned their backs on him. I ate a large banana at work today and thought it was great!
$\operatorname{sim}(\mathrm{T} 1, \mathrm{~T} 2)=11$

16

Word overlap problems

Doesn't take into account synonyms

A: When the defendant and his lawyer walked into the court, some of the victim supporters turned their backs to him.

B: When the defendant walked into the courthouse with his attorney, the crowd truned their backs on him.
$\operatorname{sim}(\mathrm{T} 1, \mathrm{~T} 2)=11$

17

Word overlap problems

Treats all words the same
A: When the defendant and his lawyer walked into the court, some of the victim supporters turned their backs to him.

B: When the defendant walked into the courthouse with his attorney, the crowd truned their backs on him.

Word overlap problems

Doesn't take into account spelling mistakes

A: When the defendant and his lawyer walked into the court, some of the victim supporters turned their backs to him.

B: When the defendant walked into the courthouse with his attorney, the crowd truned their backs on him.
$\operatorname{sim}(\mathrm{T} 1, \mathrm{~T} 2)=11$

18

Word overlap problems

May not handle frequency properly
A: When the defendant and his lawyer walked into the court, some of the victim supporters turned their backs to him. I ate a banana and then another banana and it was good!

B: When the defendant walked into the courthouse with his attorney, the crowd truned their backs on him. I ate a large banana at work today and thought it was great!

21

Word overlap: sets

What is the overlap, using set notation?

- $|A \cap B|$ the size of the intersection

How can we incorporate length/size into this measure?

Jaccard index (Jaccard similarity coefficient)

$$
J(A, B)=\frac{|A \cap B|}{|A \cup B|}
$$

Dice's coefficient

$$
\operatorname{Dice}(A, B)=\frac{2|A \cap B|}{|A|+|B|}
$$

23

Word overlap: sets

What is the overlap, using set notation?

- $|A \cap B|$ the size of the intersection

How can we incorporate length/size into this measure?

22

25

27

Set overlap

Our problems:
\square word order

- length
\square synonym
\square spelling mistakes
- word importance
\square word frequency

Bag of words representation

For now, let's ignore word order:
Obama said banana repeatedly
last week on tv, "banana,
banana, banana"
$(4,1,1,0,0,1,0,0, \ldots)$
50
"Bag of words representation": multi-dimensional vector, one dimension per word in our vocabulary

Frequency of word occurrence

28

29

31

30

32

33

Distance can be problematic

The Euclidean (or L1)
distance between q and
d_{2} is large even though
the distribution of words
is similar

35

34

Use angle instead of distance

Thought experiment:

- take a document d
\square make a new document d' by concatenating two copies of d
- "Semantically" d and d' have the same content

What is the Euclidean distance between d and d'?
What is the angle between them?

- The Euclidean distance can be large
- The angle between the two documents is 0

37

39

38

40

41

43

44

45

Distance measures

Cosine

$$
\operatorname{sim}_{\cos }(A, B)=A \cdot B=\sum_{i=1}^{n} a_{i}^{\prime} b_{i}^{\prime}
$$

L2

$$
\operatorname{dist}_{L 2}(A, B)=\sqrt{\sum_{i=1}^{n}\left(a_{i}^{\prime}-b_{i}^{\prime}\right)^{2}}
$$

Cosine is the most common measure. Why do you think?

L1

$$
\operatorname{dist}_{L 1}(A, B)=\sum_{i=1}^{n}\left|a_{i}^{\prime}-b_{i}^{\prime}\right|
$$

46

Distance measures	
Cosine	
$\operatorname{sim}_{\text {cos }}(A, B)=A \cdot B=\sum_{i=1}^{n} a_{i}^{\prime} b_{i}^{\prime}$	
L2	L1 and L2 penalize sentences for not having
$\operatorname{dist}_{L 2}(A, B)=\sqrt{\sum_{i=1}^{n}\left(a_{i}^{\prime}-b_{i}^{\prime}\right)^{2}}$	words, i.e. if a has it but b doesn't
L1	significantly faster since it only calculates over the
$\operatorname{dist}_{L 1}(A, B)=\sum_{i=1}\left\|a_{i}^{\prime}-b_{i}^{\prime}\right\|$	intersection

48

49

50

