
9/24/20

1

ADVANCED PARSING
David Kauchak
CS159 – Fall 2020

some slides adapted from 
Dan Klein

1

Admin

Assignment 3?

Assignment 4 (A and B)

Lab next Tuesday

2

Parsing evaluation

You’ve constructed a parser

You want to know how good it is

Ideas?

3

Parsing evaluation

Learn a model using the training set

Parse the test set without looking at the “correct” trees

Compare our generated parse tree to the “correct” tree

Treebank

Train Dev Test

4



9/24/20

2

Comparing trees

Correct Tree TComputed Tree P

Ideas?

I eat sushi with tuna

PRP

NP

V N IN N

PP

NP

VP

S

I eat sushi with tuna

PRP

NP

V N IN

PPNP

VP

S

N

S

5

Comparing trees

Idea 1: see if the trees match exactly
¤ Problems?

n Will have a low number of matches (people often disagree)
n Doesn’t take into account getting it almost right

Idea 2: compare the constituents

6

Comparing trees
Correct Tree TComputed Tree P

I eat sushi with tuna

PRP

NP

V N IN N

PP

NP

VP

S

I eat sushi with tuna

PRP

NP

V N IN

PPNP

VP

S

How can we turn this into a score?
How many constituents match?

N

S

7

Evaluation measures

Precision

Recall

F1

# of correct constituents

# of constituents in the computed tree

# of correct constituents

# of constituents in the correct tree

2 * Precision * Recall

Precision + Recall
What does this favor?

8



9/24/20

3

Comparing trees
Correct Tree TComputed Tree P

I eat sushi with tuna

PRP

NP

V N IN N

PP

NP

VP

S

# Constituents: 11 # Constituents: 10# Correct Constituents: 9

Precision: Recall: F1:9/11 9/10 0.857

I eat sushi with tuna

PRP

NP

V N IN

PPNP

VP

S

N

S

9

Parsing evaluation

Corpus: Penn Treebank, WSJ

Parsing has been fairly standardized to allow for easy 
comparison between systems

Training: sections 02-21
Development: section 22 (first 20 files)
Test: section 23

10

Treebank PCFGs

Use PCFGs for broad coverage parsing

Can take a grammar right off the trees (doesn’t work well):

ROOT ® S

S ®NP VP .

NP ® PRP

VP ®VBD ADJP

…..

Model F1
Baseline 72.0

11

Generic PCFG Limitations

PCFGs do not use any information about where the 
current constituent is in the tree

PCFGs do not rely on specific words or concepts, only 
general structural disambiguation is possible (e.g. 
prefer to attach PPs to Nominals)

MLE estimates are not always the best

12



9/24/20

4

Conditional Independence?

Will a PCFG differentiate between these?

What’s the problem?

13

Conditional Independence?

It treats all NPs as equivalent… but they’re not!
§ A grammar with symbols like “NP” won’t be context-free
§ Statistically, conditional independence too strong

14

Strong independence assumption

PRP

NP

V N IN

PP

NP

VP

S

I eat sushi with tuna

N

S -> NP VP
NP -> PRP
PRP -> I
VP -> V NP
V -> eat
NP -> N PP
N -> sushi
PP -> IN N
IN -> with
N -> tuna

We’re making a strong 
independence assumption here!

15

Non-Independence

Example: the expansion of an NP is highly dependent on the parent of the 
NP (i.e., subjects vs. objects).

Also: the subject and object expansions are correlated

11%
9%

6%

NP PP DT NN PRP

9% 9%

21%

NP PP DT NN PRP

7%
4%

23%

NP PP DT NN PRP

All NPs NPs under S NPs under VP

Independence assumptions are often too strong

16



9/24/20

5

Grammar Refinement

Idea: expand/refine our grammar

Challenges:

§ Must refine in ways that facilitate disambiguation
§ Must trade-offs between too little and too much refinement. 

§ Too much refinement -> sparsity problems
§ To little -> can’t discriminate (PCFG)

17

Grammar Refinement

Ideas?

18

Grammar Refinement

Structure Annotation [Johnson ’98, Klein&Manning ’03]
§ Differentiate constituents based on their local context

Lexicalization [Collins ’99, Charniak ’00]
§ Differentiate constituents based on the spanned words

Constituent splitting [Matsuzaki et al. 05, Petrov et al. ’06]
§ Cluster/group words into sub-constituents

19

Markovization

Except for the root node, every node in a parse tree has:
¤ A vertical history/context
¤ A horizontal history/context

NP

NP

VP

S

NPVBD

Traditional PCFGs use the full horizontal context and 
a vertical context of 1

20



9/24/20

6

Vertical Markovization

Vertical Markov order: rewrites depend on past k ancestor 
nodes.

Order 1 is most common: aka parent annotation

Order 1 Order 2

21

Allows us to make finer grained distinctions

^S

^VP

22

Vertical Markovization

72%
73%
74%
75%
76%
77%
78%
79%

1 2v 2 3v 3

Vertical Markov Order

0
5000

10000
15000
20000
25000

1 2v 2 3v 3

Vertical Markov Order

Sy
m
bo
ls

F1 performance # of non-terminals

23

Horizontal Markovization

Order 1 Order ¥

Horizontal Markov order: rewrites depend on past k sibling nodes

Order 1 is most common: condition on a single sibling

24



9/24/20

7

Horizontal Markovization

70%

71%

72%

73%

74%

0 1 2v 2 inf

Horizontal Markov Order

0

3000

6000

9000

12000

0 1 2v 2 inf

Horizontal Markov Order

Sy
m
bo
ls

F1 performance # of non-terminals

25

Problems with PCFGs

What’s different between basic PCFG scores here?

26

Example of Importance of 
Lexicalization

A general preference for attaching PPs to NPs rather than 
VPs can be learned by an ordinary PCFG

But the desired preference can depend on specific words

S

NP           VP

John       V     NP          PP

put    the dog  in the carrier

S

NP           VP

John       V     NP 

put    the dog  in the carrier

Which is correct?

27

Example of Importance of 
Lexicalization

A general preference for attaching PPs to NPs rather than 
VPs can be learned by an ordinary PCFG

But the desired preference can depend on specific words

S

NP           VP

John       V     NP          PP

knew   the dog  in the carrier

S

NP           VP

John       V     NP 

knew  the dog  in the carrier

Which is correct?

28



9/24/20

8

Lexicalized Trees

How could we lexicalize 
the grammar/tree?

29

Lexicalized Trees

Add “headwords” to each 
phrasal node

¤ Syntactic vs. semantic 
heads

¤ Headship not in (most) 
treebanks

¤ Usually use head rules, e.g.:
n NP:

n Take leftmost NP
n Take rightmost N*
n Take rightmost JJ
n Take right child

n VP:
n Take leftmost VB*
n Take leftmost VP
n Take left child

30

Lexicalized PCFGs?

Problem: we now have to estimate probabilities like

How would we estimate the probability of this rule?

Never going to get these automatically off of a treebank

Ideas?

Count(VP(put) → VBD(put) NP(dog) PP(in))

Count(VP (put))

VP(put) → VBD(put) NP(dog) PP(in)

31

One approach

Combine this with some of the markovization
techniques we saw

Collins’ (1999) parser
Models productions based on context to the left and the 
right of the head child.

LHS → LnLn-1…L1H R1…Rm-1Rm

32



9/24/20

9

One approach

LHS → LnLn-1…L1H R1…Rm-1Rm

First generate the head (H) given the parent

Then repeatedly generate left symbols (Li) until the 
beginning is reached

Then right (Ri) symbols until the end is reached

33

Sample Production Generation

VPput → VBDput NPdog PPin

VPput →

34

Sample Production Generation

VPput → VBDput NPdog PPin

VPput → VBDput

H

PH(VBD | VPput)

35

Sample Production Generation

VPput → VBDput NPdog PPin

VPput → VBDput

HL1

STOP

PL(STOP | VPput)

36



9/24/20

10

Sample Production Generation

VPput → VBDput NPdog PPin

VPput → VBDput NPdog

HL1

STOP
R1

PR(NPdog | VPput)

37

Sample Production Generation

VPput → VBDput NPdog PPin

VPput → VBDput NPdog

HL1

STOP PPin

R1 R2

PR(PPin | VPput)

38

Sample Production Generation

VPput → VBDput NPdog PPin

VPput → VBDput NPdog

HL1

STOP PPin STOP
R1 R2 R3

PR(STOP | PPin)

39

Sample Production Generation

VPput → VBDput NPdog PPin

Note: Penn treebank tends to 
have fairly flat parse trees that 
produce long productions. 

VPput → VBDput NPdog

HL1

STOP PPin STOP
R1 R2 R3

PL(STOP | VPput) * PH(VBD | VPput)* 
PR(NPdog | VPput)*

PR(PPin | VPput) * PR(STOP | PPin)

40



9/24/20

11

Count(PPin right of head in a VPput production)

Estimating Production Generation Parameters

Estimate PH, PL, and PR parameters from treebank data

PR(PPin | VPput) =
Count(symbol right of head in a VPput)

Count(NPdog right of head in a VPput production)
PR(NPdog | VPput) =

Smooth estimates by combining with simpler models 
conditioned on just POS tag or no lexical info

smPR(PPin | VPput-) = l1 PR(PPin | VPput) 
+ (1- l1) (l2 PR(PPin | VPVBD) +

(1- l2) PR(PPin | VP)) 

Count(symbol right of head in a VPput)

41

Problems with lexicalization

We’ve solved the estimation problem

There’s also the issue of performance

Lexicalization causes the size of the number of grammar 
rules to explode!

Our parsing algorithms take too long too finish

Ideas?

42

Pruning during search

We can no longer keep all possible parses around

We can no longer guarantee that we actually return
the most likely parse

Beam search [Collins 99]
¤ In each cell only keep the K most likely hypotheses
¤ Disregard constituents over certain spans (e.g. 

punctuation)
¤ F1 of 88.6!

43

Pruning with a PCFG

The Charniak parser prunes using a two-pass approach 
[Charniak 97+]

¤ First, parse with the base (non-lexicalized) grammar
¤ For each X:[i,j] calculate P(X|i,j,s)

n This isn’t trivial, and there are clever speed ups
¤ Second, do the full CKY

n Skip any X :[i,j] which had low (say, < 0.0001) posterior
¤ Avoids almost all work in the second phase!

F1 of 89.7!

44



9/24/20

12

Final Results

F1
≤ 40 words

F1
all wordsParser

Klein & Manning ’03 86.3 85.7

Matsuzaki et al. ’05 86.7 86.1

Collins ’99 88.6 88.2

Charniak & Johnson ’05 90.1 89.6

Petrov et. al. 06 90.2 89.7

45

Human Parsing

How do humans do it?

How might you try and figure it out 
computationally/experimentally?

46

Human Parsing

Read these sentences

Which one was fastest/slowest?

John put the dog in the pen with a lock.

John carried the dog in the pen with a bone in the car.

John liked the dog in the pen with a bone.

47

Human Parsing

Computational parsers can be used to predict human reading 
time as measured by tracking the time taken to read each word 
in a sentence.

Psycholinguistic studies show that words that are more probable 
given the preceding lexical and syntactic context are read faster.

¤ John put the dog in the pen with a lock.
¤ John carried the dog in the pen with a bone in the car.
¤ John liked the dog in the pen with a bone.

Modeling these effects requires an incremental statistical parser 
that incorporates one word at a time into a continuously growing 
parse tree.

48



9/24/20

13

Garden Path Sentences

People are confused by sentences that seem to have a 
particular syntactic structure but then suddenly violate this 
structure, so the  listener is “lead down the garden path”.

¤ The horse raced past the barn fell.
n vs. The horse raced past the barn broke his leg.

¤ The complex houses married students.

¤ The old man the sea.

¤ While Anna dressed the baby spit up on the bed.

Incremental computational parsers can try to predict and 
explain the problems encountered parsing such sentences.

49

More garden sentences

The prime number few.
Fat people eat accumulates.
The cotton clothing is usually made of grows in Mississippi.
Until the police arrest the drug dealers control the street.
The man who hunts ducks out on weekends.
When Fred eats food gets thrown.
Mary gave the child the dog bit a bandaid.
The girl told the story cried.
I convinced her children are noisy.
Helen is expecting tomorrow to be a bad day.
The horse raced past the barn fell.
I know the words to that song about the queen don't rhyme.
She told me a little white lie will come back to haunt me.
The dog that I had really loved bones.
That Jill is never here hurts.
The man who whistles tunes pianos.
The old man the boat.
Have the students who failed the exam take the supplementary.
The raft floated down the river sank.
We painted the wall with cracks.
The tycoon sold the offshore oil tracts for a lot of money wanted to kill JR.

http://www.fun-with-words.com/ambiguous_garden_path.html

50


