CS159 - Absolute Discount Smoothing Handout

David Kauchak - Fall 2020

To help understand the absolute discounting computation, below is a walkthrough of the probability calculations on as *very* small corpus.

Given the following corpus (where we only have one letter words):

a a a b a b b a c a a a

We would like to calculate an absolute discounted model with D = 0.5. We'll ignore the begin and end sentence tokens, assume that our vocabulary is all three "words" and not worry about handling out of vocabulary words (i.e. <UNK>).

We first calculate the unigram MLE probabilities as:

	MLE prob
p(a)	8/12
p(b)	3/12
p(c)	1/12

and the bigram MLE probabilities as:

	MLE prob	
p(a a)	4/6	
p(b a)	2/6	
p(c a)	0	
p(a b)	1/2	
p(b b)	1/2	
p(c b)	0	
p(a c)	1	
p(b c)	0	
p(c c)	0	

Using this information, we can now calculate the reserved mass and the α s for each of the words in our vocabulary (i.e. things that we're conditioning on):

• a

The numerator for our α is the reserved mass:

$$reserved_mass(a) = (2 * 0.5)/6 = 1/6$$

and the denominator is:

$$1 - \sum_{x:count(ax)>0} p(x) = 1 - (p(a) + p(b)) = 1 - (8/12 + 3/12) = 1/12$$

giving us an α of:

$$\alpha(a) = \frac{1/6}{1/12} = 2$$

• b

 $reserved_mass(b) = (2*0.5)/2 = 1/2$

$$1 - \sum_{x:count(bx)>0} p(x) = 1 - (p(a) + p(b)) = 1 - (8/12 + 3/12) = 1/12$$

$$\alpha(b) = \frac{1/2}{1/12} = 6$$

• c

 $reserved_mass(c) = (1 * 0.5)/1 = 1/2$

$$1 - \sum_{x:count(cx)>0} p(x) = 1 - p(a) = 1 - (8/12) = 4/12 = 1/3$$
$$\alpha(c) = \frac{1/2}{1/3} = 3/2$$

Finally, now that we have the α s, we can calculate the smoothed bigram probabilities. For those that occurred, we simply discount the count. For those that did not occur, we calculate the probability as *alpha* times the unigram probability of the word.

	eqn	prob
p(a a)	(4 - 0.5)/6	3.5/6
p(b a)	(2 - 0.5)/6	1.5/6
p(c a)	2 * 1/12	1/6
p(a b)	(105)/2	1/4
p(b b)	(1-0.5)/2	1/4
p(c b)	6 * 1/12	1/2
p(a c)	(1-0.5)/1	1/2
p(b c)	3/2 * 3/12	3/8
p(c c)	3/2 * 1/12	1/8

Notice that after the smoothing, the three distributions all still sum to 1. In this case discounting by 0.5 may be a bit aggressive.

Note, for the first two distributions $(p(\cdot|a) \text{ and } p(\cdot|b))$, we actually didn't need to go through the exercise of calculating α since there was only one "word" we were backing off to and it therefore would get all of the reserved mass. However, I included the computation here so you can see that the math still works out.