Multiclass classification

- Examples:
 - Label
 - Apple
 - Orange
 - Banana
 - Pineapple

- Same setup where we have a set of features for each example.
- Rather than just two labels, now have 3 or more.

Real world multiclass classification

- Most real-world applications tend to be multiclass.
- Examples:
 - Document classification
 - Handwriting recognition
 - Face recognition
 - Protein classification
 - Sentiment analysis
 - Autonomous vehicles
 - Emotion recognition
Multiclass: current classifiers

Any of these work out of the box?
With small modifications?

k-Nearest Neighbor (k-NN)

To classify an example d:
- Find k nearest neighbors of d
- Choose as the label the majority label within the k nearest neighbors

Decision Tree learning

Base cases:
1. If all data belong to the same class, pick that label
2. If all the data have the same feature values, pick majority label
3. If we're out of features to examine, pick majority label
4. If the we don't have any data left, pick majority label of parent
5. If some other stopping criteria exists to avoid overfitting, pick majority label

Otherwise:
- calculate the “score” for each feature if we used it to split the data
- pick the feature with the highest score, partition the data based on that data value and call recursively

No algorithmic changes!

Perceptron learning

Hard to separate three classes with just one line 👍
Black box approach to multiclass

Abstraction: we have a generic binary classifier, how can we use it to solve our new problem

Can we solve our multiclass problem with this?

Approach 1: One vs. all (OVA)

Training: for each label L, pose as a binary problem
- all examples with label L are positive
- all other examples are negative

OVA: linear classifiers (e.g. perceptron)

How do we classify?
OVA: linear classifiers (e.g. perceptron)

How do we classify?

13

14

banana or pineapple?

15

16
OVA: linear classifiers (e.g. perceptron)

- pineapple vs. not
- apple vs. not
- banana vs. not

How do we classify?

Classify:
- If classifier doesn't provide confidence (this is rare) and there is ambiguity, pick one of the ones in conflict
- Otherwise:
 - pick the most confident positive
 - if none vote positive, pick least confident negative

What does the decision boundary look like?
OVA: classify, perceptron

Classify:
- If classifier doesn’t provide confidence (this is rare) and there is ambiguity, pick majority in conflict
- Otherwise:
 - pick the most confident positive
 - if none vote positive, pick least confident negative

How do we calculate this for the perceptron?

\[
prediction = b + \sum_{i=1}^{n} w_i f_i
\]

Distance from the hyperplane

Approach 2: All vs. all (AVA)

Training:
For each pair of labels, train a classifier to distinguish between them

for \(i = 1 \) to number of labels:
 for \(k = i+1 \) to number of labels:
 train a classifier to distinguish between label \(j \) and label \(k \):
 - create a dataset with all examples with label \(j \) labeled positive and all examples with label \(k \), labeled negative
 - train classifier on this subset of the data

AVA training visualized

<table>
<thead>
<tr>
<th>apple vs orange</th>
<th>apple vs banana</th>
</tr>
</thead>
<tbody>
<tr>
<td>apple</td>
<td>orange</td>
</tr>
<tr>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>apple</td>
<td>banana</td>
</tr>
<tr>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>apple</td>
<td>apple vs banana</td>
</tr>
<tr>
<td></td>
<td>+1</td>
</tr>
<tr>
<td>apple</td>
<td>banana</td>
</tr>
<tr>
<td></td>
<td>+1</td>
</tr>
<tr>
<td>apple</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>banana</td>
<td>apple</td>
</tr>
<tr>
<td></td>
<td>+1</td>
</tr>
<tr>
<td>banana</td>
<td>apple</td>
</tr>
<tr>
<td></td>
<td>+1</td>
</tr>
<tr>
<td>banana</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>-1</td>
</tr>
</tbody>
</table>
To classify example e, classify with each classifier f_k.

We have a few options to choose the final class:
- Take a majority vote
- Take a weighted vote based on confidence
 $y = f_j(e)$
 $\text{score}_j \leftarrow y$
 $\text{score}_k \leftarrow -y$

How does this work?

For weighted vote:

1. If y is positive, classifier thought it was of type j:
 - $\text{raise the score for } j$
 - $\text{lower the score for } k$

2. If y is negative, classifier thought it was of type k:
 - $\text{lower the score for } j$
 - $\text{raise the score for } k$

Note: We're assuming y encompasses both the prediction ($+1, -1$) and the confidence, i.e., $y = \text{prediction} \times \text{confidence}$.
OVA vs. AVA

Train/classify runtime?

Error? Assume each binary classifier makes an error with probability ε

Train times:
AVA learns more classifiers, however, they’re trained on much smaller data this tends to make it faster if the labels are equally balanced

Test times:
AVA has more classifiers, so often it is slower

Error (see the book for more justification):
- AVA trains on more balanced data sets
- AVA tests with more classifiers and therefore has more chances for errors
 - Theoretically:
 - OVA: ε (number of labels -1)
 - AVA: 2ε (number of labels -1)

Approach 3: Divide and conquer

Pros/cums vs. AVAR

Multiclass summary

If using a binary classifier, the most common thing to do is OVA

Otherwise, use a classifier that allows for multiple labels:
- DT and k-NN work reasonably well
- We’ll see a few more in the coming weeks that will often work better
Multiclass evaluation

<table>
<thead>
<tr>
<th>label</th>
<th>prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>apple</td>
<td>orange</td>
</tr>
<tr>
<td>orange</td>
<td>orange</td>
</tr>
<tr>
<td>apple</td>
<td>apple</td>
</tr>
<tr>
<td>banana</td>
<td>pineapple</td>
</tr>
<tr>
<td>banana</td>
<td>banana</td>
</tr>
<tr>
<td>pineapple</td>
<td>pineapple</td>
</tr>
</tbody>
</table>

How should we evaluate?

Accuracy: 4/6

Multiclass evaluation imbalanced data

<table>
<thead>
<tr>
<th>label</th>
<th>prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>apple</td>
<td>apple</td>
</tr>
<tr>
<td>apple</td>
<td>apple</td>
</tr>
<tr>
<td>banana</td>
<td>pineapple</td>
</tr>
<tr>
<td>banana</td>
<td>banana</td>
</tr>
<tr>
<td>pineapple</td>
<td>pineapple</td>
</tr>
</tbody>
</table>

Any problems?

Data imbalance

Macroaveraging vs. microaveraging

Microaveraging: average over examples (this is the "normal" way of calculating)

Macroaveraging: calculate evaluation score (e.g. accuracy) for each label, then average over labels

What effect does this have?

Why include it?
Macroaveraging vs. microaveraging

microaveraging: average over examples (this is the “normal” way of calculating)

macroaveraging: calculate evaluation score (e.g. accuracy) for each label, then average over labels

- Puts more weight/emphasis on rarer labels
- Allows another dimension of analysis

Confusion matrix

entry \((i, j)\) represents the number of examples with label \(i\) that were predicted to have label \(j\)

another way to understand both the data and the classifier

<table>
<thead>
<tr>
<th></th>
<th>Classic</th>
<th>Country</th>
<th>Disco</th>
<th>Hiphop</th>
<th>Jazz</th>
<th>Rock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classic</td>
<td>86</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>Country</td>
<td>1</td>
<td>57</td>
<td>5</td>
<td>1</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Disco</td>
<td>0</td>
<td>6</td>
<td>55</td>
<td>4</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Hiphop</td>
<td>0</td>
<td>15</td>
<td>20</td>
<td>90</td>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>Jazz</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>37</td>
<td>12</td>
</tr>
<tr>
<td>Rock</td>
<td>6</td>
<td>10</td>
<td>11</td>
<td>0</td>
<td>27</td>
<td>48</td>
</tr>
</tbody>
</table>
Confusion matrix

BLAST classification of proteins in 850 superfamilies

Multilabel vs. multiclass classification

• Is it edible?
• Is it sweet?
• Is it a fruit?
• Is it a banana?

• Is it a banana?
• Is it yellow?
• Is it sweet?
• Is it round?

Any difference in these labels/categories?

Multiclass vs. multilabel

Multiclass: each example has one label and exactly one label

Multilabel: each example has zero or more labels. Also called annotation

Multilabel applications?
Multilabel

- Image annotation
- Document topics
- Labelling people in a picture
- Medical diagnosis

Ranking problems

Suggest a simpler word for the word below:

vital

Suggest a simpler word for the word below:

acquired

<table>
<thead>
<tr>
<th>Term</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>important</td>
<td>13</td>
</tr>
<tr>
<td>necessary</td>
<td>12</td>
</tr>
<tr>
<td>essential</td>
<td>11</td>
</tr>
<tr>
<td>needed</td>
<td>8</td>
</tr>
<tr>
<td>crucial</td>
<td>3</td>
</tr>
<tr>
<td>mandatory</td>
<td>1</td>
</tr>
<tr>
<td>required</td>
<td>1</td>
</tr>
<tr>
<td>vital</td>
<td>1</td>
</tr>
</tbody>
</table>
Suggest a simpler word

Suggest a simpler word for the word below:

<table>
<thead>
<tr>
<th>Word</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>gotten</td>
<td>12</td>
</tr>
<tr>
<td>gained</td>
<td>8</td>
</tr>
<tr>
<td>obtained</td>
<td>5</td>
</tr>
<tr>
<td>got</td>
<td>3</td>
</tr>
<tr>
<td>purchased</td>
<td>2</td>
</tr>
<tr>
<td>bought</td>
<td>2</td>
</tr>
<tr>
<td>got hold of</td>
<td>1</td>
</tr>
<tr>
<td>acquired</td>
<td>1</td>
</tr>
</tbody>
</table>

vital
important
necessary
essential
needed
critical
crucial
mandatory
required
vital

gotten
received
gained
obtained
got
purchased
bought
got hold of
acquired

Ranking problems in general

Ranking problems in general

Real-world ranking problems?
Search

Ranking Applications
- reranking N-best output lists
- machine translation
- computational biology
- parsing
- ...
- flight search
- ...

Black box approach to ranking

Abstraction: we have a generic binary classifier, how can we use it to solve our new problem?

Can we solve our ranking problem with this?

Predict better vs. worse

Train a classifier to decide if the first input is better than second:
- Consider all possible pairings of the examples in a ranking
- Label as positive if the first example is higher ranked, negative otherwise
Train a classifier to decide if the first input is better than second:

- Consider all possible pairings of the examples in a ranking
- Label as positive if the first example is higher ranked, negative otherwise

\[f_1, f_2, \ldots, f_n \]

How can we do this?

We want features that compare the two examples.

Combined feature vector

Many approaches! Will depend on domain and classifier.

Two common approaches:

1. difference:
 \[f'_1 = a_i - b_i \]
2. greater than/less than:
 \[f'_2 = \begin{cases} 1 & \text{if } a_i > b_i \\ 0 & \text{otherwise} \end{cases} \]
Training

New examples

\[f_1', f_2', \ldots, f_n' \]

Extract features

Train classifier

Binary classifier

Testing

Unranked

\[f_1, f_2, \ldots, f_n \]

Extract features

Binary classifier

Ranking?
What is the ranking?
Algorithm?

for each binary example e_{jk}:

\[
\text{label}[j] \leftarrow f_j(e_{jk}) \\
\text{label}[k] \leftarrow f_k(e_{jk})
\]

rank according to label scores