K-means

Start with some initial cluster centers

Iterate:
- Assign/cluster each example to closest center
- Recalculate centers as the mean of the points in a cluster

Problems with K-means

- Determining K is challenging
- Hard clustering isn't always right
- Assumes clusters are spherical
- Greedy approach

Administrative

- Final projects
- Next class: skim the papers
- No mentor hours this week
Problems with K-means

What would K-means give us here?

Assumes spherical clusters

K-means assumes spherical clusters!

K-means: another view

K-means: another view
K-means: assign points to nearest center

K-means: readjust centers

Iteratively learning a collection of spherical clusters

EM clustering: mixtures of Gaussians

Assume data came from a mixture of Gaussians (elliptical data), assign data to cluster with a certain probability (soft clustering)

EM clustering

Very similar at a high-level to K-means

Iterate between assigning points and recalculating cluster centers

Two main differences between K-means and EM clustering:
1. We assume elliptical clusters (instead of spherical)
2. It is a “soft” clustering algorithm
Soft clustering

\[p(\text{red-right}) = 0.8 \]
\[p(\text{blue-left}) = 0.2 \]
\[p(\text{red-right}) = 0.9 \]
\[p(\text{blue-left}) = 0.1 \]

EM clustering

Start with some initial cluster centers
Iterate:
- **soft assign** points to each cluster

 Calculate: \(p(x_i; \theta_j) \)
 the probability of each point belonging to each cluster
- recalculate the cluster centers

 Calculate new cluster parameters, \(\theta_i \)
 maximum likelihood cluster centers given the current soft clustering

EM example

Start with some initial cluster centers

Figure from Chris Bishop

Step 1: soft cluster points

Which points belong to which clusters (soft)?

Figure from Chris Bishop
Step 1: soft cluster points

Notice it's a soft (probabilistic) assignment

Figure from Chris Bishop

17

Step 2: recalculate centers

What do the new centers look like?

Figure from Chris Bishop

18

Step 2: recalculate centers

Cluster centers get a weighted contribution from points

Figure from Chris Bishop

19

keep iterating...

Figure from Chris Bishop

20
Model: mixture of Gaussians

How do you define a Gaussian (i.e. ellipse)?
In 1-D?
In m-D?

Gaussian in 1D

\[f(x; \sigma, \theta) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\theta)^2}{2\sigma^2}} \]
parameterized by the mean and the standard deviation/variance

Gaussian in multiple dimensions

We learn the means of each cluster (i.e. the center) and the covariance matrix (i.e. how spread out it is in any given direction)

Step 1: soft cluster points

- soft assign points to each cluster
 Calculate: \(p(x; \theta_c) \)
 the probability of each point belonging to each cluster

How do we calculate these probabilities?
Step 1: soft cluster points

- soft assign points to each cluster

 Calculate: $p(x; \theta_c)$

 the probability of each point belonging to each cluster

 Just plug into the Gaussian equation for each cluster!
 (and normalize to make a probability)

Step 2: recalculate centers

Recalculate centers:
- calculate new cluster parameters, θ_c
- maximum likelihood cluster centers given the current soft clustering

How do calculate the cluster centers?

Fitting a Gaussian

What is the “best”-fit Gaussian for this data?

10, 10, 10, 9, 9, 8, 11, 7, 6, ...

Recall this is the 1-D Gaussian equation:

$$f(x; \sigma, \theta) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
Step 2: recalculate centers

Recalculate centers:
Calculate θ_c, maximum likelihood cluster centers given the current soft clustering

How do we deal with “soft” data points?

Use fractional counts!

E and M steps: creating a better model

EM stands for Expectation Maximization

Expectation: Given the current model, figure out the expected probabilities of the data points to each cluster

$p(x; \theta_c)$ What is the probability of each point belonging to each cluster?

Maximization: Given the probabilistic assignment of all the points, estimate a new model, θ_c

Just like NB maximum likelihood estimation, except we use fractional counts instead of whole counts

Similar to k-means

Iterate:
- Assign/cluster each point to closest center

Expectation: Given the current model, figure out the expected probabilities of $p(x; \theta_c)$ the points to each cluster

Recalculate centers as the mean of the points in a cluster

Maximization: Given the probabilistic assignment of all the points, estimate a new model, θ_c
E and M steps

Expectation: Given the current model, figure out the expected probabilities of the data points to each cluster

Maximization: Given the probabilistic assignment of all the points, estimate a new model, \(\theta \).

Iterate: each iteration increases the likelihood of the data and is guaranteed to converge (though to a local optimum)!

EM

EM is a general purpose approach for training a model when you don’t have labels

- Not just for clustering!
 - K-means is just for clustering

- One of the most general purpose unsupervised approaches
 - can be hard to get right!

EM is a general framework

Create an initial model, \(\theta' \)
 - Arbitrarily, randomly, or with a small set of training examples

Use the model \(\theta' \) to obtain another model \(\theta \) such that
 \[
 \sum_i \log P_{\theta}(\text{data}_i) > \sum_i \log P_{\theta'}(\text{data}_i) \quad \text{i.e. better models data} \]

Let \(\theta' = \theta \) and repeat the above step until reaching a local maximum
 - Guaranteed to find a better model after each iteration

EM shows up all over the place

- Training HMMs (Baum-Welch algorithm)
- Learning probabilities for Bayesian networks
- EM-clustering
- Learning word alignments for language translation
- Learning Twitter friend network
- Genetics
- Finance
- Anytime you have a model and unlabeled data!
In machine translation, we train from pairs of translated sentences. Often useful to know how the words align in the sentences.

Use EM!

- Learn a model of \(P(\text{french-word} \mid \text{english-word}) \)

"la" and "the" observed to co-occur frequently, so \(P(\text{la} \mid \text{the}) \) is increased.

"house" co-occurs with both "la" and "maison", but \(P(\text{maison} \mid \text{house}) \) can be raised without limit, to 1.0, while \(P(\text{la} \mid \text{house}) \) is limited because of "the" (pigeonhole principle)
Finding Word Alignments

settling down after another iteration

Statistical Machine Translation

P(\text{maison} \mid \text{house}) = 0.411
P(\text{maison} \mid \text{building}) = 0.027
P(\text{maison} \mid \text{manson}) = 0.020

Other clustering algorithms

K-means and EM-clustering are by far the most popular for clustering

However, they can't handle all clustering tasks

What types of clustering problems can't they handle?
Non-Gaussian data

What is the problem?

Similar to classification: global decision (linear model) vs. local decision (K-NN)

Spectral clustering

What Is A Good Clustering?

Internal criterion: A good clustering will produce high quality clusters in which:
- the intra-class (that is, intra-cluster) similarity is high
- the inter-class similarity is low

How would you evaluate clustering?
Common approach: use labeled data

Use data with known classes
- For example, document classification data

If we clustered this data (ignoring labels) what would we like to see?
- Reproduces class partitions
- How can we quantify this?

Overall purity

Cluster I: Purity = \(\frac{\max(3, 1, 0)}{4} = 3/4\)
Cluster II: Purity = \(\frac{\max(1, 4, 1)}{6} = 4/6\)
Cluster III: Purity = \(\frac{\max(2, 0, 3)}{5} = 3/5\)

Cluster average:
\[
\frac{3 + 4 + 3}{4 + 6 + 5} = 0.672
\]

Weighted average:
\[
\frac{4 \times 3 + 6 \times 4 + 5 \times 3}{5 + 6 + 5} = \frac{3 + 4 + 3}{15} = 0.667
\]

Purity issues...

Purity, the proportion of the dominant class in the cluster

Good for comparing two algorithms, but not understanding how well a single algorithm is doing, why?
- Increasing the number of clusters increases purity
Purity isn't perfect

Which is better based on purity?
Which do you think is better?
Ideas?

Common approach: use labeled data

Average entropy of classes in clusters

\[\text{entropy(cluster)} = - \sum p(\text{class}_i) \log p(\text{class}_i) \]

where \(p(\text{class}_i) \) is proportion of class \(i \) in cluster

Common approach: use labeled data

\[\text{entropy(cluster)} = - \sum p(\text{class}_i) \log p(\text{class}_i) \]

\[-0.5 \log 0.5 - 0.5 \log 0.5 = 1 \]
\[-0.5 \log 0.5 - 0.25 \log 0.25 - 0.25 \log 0.25 = 1.5 \]
Where we've been!

How many slides?

~1,400 slides

Our ML suite:

How many classes?

29 classes

How many lines of code?

2951 lines of code

Our ML suite:

- Supports 7 classifiers
 - Decision Tree
 - Perceptron
 - Average Perceptron
 - Gradient descent
 - 2 loss functions
 - 2 regularization methods
 - K-NN
 - Naïve Bayes
 - 2 layer neural network
- Supports two types of data normalization
 - Feature normalization
 - Example normalization
- Supports two types of meta-classifiers
 - OVA
 - AVA
Where we’ve been!

- Geometric view of data
- Model analysis and interpretation (linear, etc.)
- Evaluation and experimentation
- Probability basics
- Regularization (and priors)
- Deep learning
- Ensemble methods
- Unsupervised learning (clustering)

Four of these are true

1. I lived in Vermont for three years
2. I won a disc golf tournament
3. I’m a dual citizen
4. I’ve been to Albania 5 times
5. I brew my own beer

Four of these are true

1. I cut my own hair
2. I wrote the prototype of Google Scholar
3. I mountain unicycle
4. I was born in Antarctica
5. I have over 100 bottles of alcohol at home

Midterm 2

- Mean: 28.58 (87%)
- Q3: 30.4 (92%)
- Median: 29 (88%)
- Q1: 27.75 (84%)

Good job!