Ensemble learning

Basic idea: if one classifier works well, why not use multiple classifiers!
Ensemble learning

Basic idea: if one classifier works well, why not use multiple classifiers!

Example to label

How do we decide on the final prediction?

<table>
<thead>
<tr>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>0.016</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>I</td>
<td>0.144</td>
</tr>
<tr>
<td>C</td>
<td>I</td>
<td>C</td>
<td>0.144</td>
</tr>
<tr>
<td>C</td>
<td>I</td>
<td>I</td>
<td>0.096</td>
</tr>
<tr>
<td>I</td>
<td>C</td>
<td>C</td>
<td>0.144</td>
</tr>
<tr>
<td>I</td>
<td>C</td>
<td>I</td>
<td>0.096</td>
</tr>
<tr>
<td>I</td>
<td>I</td>
<td>C</td>
<td>0.096</td>
</tr>
<tr>
<td>I</td>
<td>I</td>
<td>I</td>
<td>0.064</td>
</tr>
</tbody>
</table>

Benefits of ensemble learning

Assume each classifier makes a mistake with some probability (e.g., 0.4, that is a 40% error rate)

Assuming the decisions made between classifiers are independent, what will be the probability that we make a mistake (i.e., error rate) with three classifiers for a binary classification problem?
Benefits of ensemble learning

Assume each classifier makes a mistake with some probability (e.g. 0.4, that is a 40% error rate)

<table>
<thead>
<tr>
<th>model 1</th>
<th>model 2</th>
<th>model 3</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>.6*.6*.6=0.216</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>I</td>
<td>.6*.6*.4=0.144</td>
</tr>
<tr>
<td>C</td>
<td>I</td>
<td>C</td>
<td>.6*.4*.6=0.144</td>
</tr>
<tr>
<td>I</td>
<td>I</td>
<td>I</td>
<td>.6*.4*.4=0.096</td>
</tr>
<tr>
<td>I</td>
<td>C</td>
<td>C</td>
<td>.4*.6*.6=0.144</td>
</tr>
<tr>
<td>I</td>
<td>C</td>
<td>I</td>
<td>.4*.6*.4=0.096</td>
</tr>
<tr>
<td>I</td>
<td>I</td>
<td>C</td>
<td>.4*.4*.6=0.096</td>
</tr>
<tr>
<td>I</td>
<td>I</td>
<td>I</td>
<td>.4*.4*.4=0.064</td>
</tr>
</tbody>
</table>

0.096+ 0.096+ 0.096+ 0.064 = 35% error!

Benefits of ensemble learning

For 3 classifiers in general, for r = probability of mistake for individual classifier:

$$p(error) = 3r^2(1-r) + r^3$$

<table>
<thead>
<tr>
<th>r</th>
<th>$p(error)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>0.35</td>
</tr>
<tr>
<td>0.3</td>
<td>0.22</td>
</tr>
<tr>
<td>0.2</td>
<td>0.10</td>
</tr>
<tr>
<td>0.1</td>
<td>0.028</td>
</tr>
<tr>
<td>0.05</td>
<td>0.0073</td>
</tr>
</tbody>
</table>

Benefits of ensemble learning

For 5 classifiers in general, for r = probability of mistake for individual classifier:

$$p(error) = 10r^3(1-r)^2 + 5r^4(1-r) + r^5$$

<table>
<thead>
<tr>
<th>r</th>
<th>$p(error)$ for 3 classifiers</th>
<th>$p(error)$ for 5 classifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>0.35</td>
<td>0.32</td>
</tr>
<tr>
<td>0.3</td>
<td>0.22</td>
<td>0.16</td>
</tr>
<tr>
<td>0.2</td>
<td>0.10</td>
<td>0.06</td>
</tr>
<tr>
<td>0.1</td>
<td>0.028</td>
<td>0.0086</td>
</tr>
<tr>
<td>0.05</td>
<td>0.0073</td>
<td>0.0012</td>
</tr>
</tbody>
</table>

Benefits of ensemble learning

For m classifiers in general, for r = probability of mistake for individual classifier:

$$p(error) = \sum_{i=\lceil m/2 \rceil}^{m} \binom{m}{i} r^i (1-r)^{m-i}$$

(cumulative probability distribution for the binomial distribution)
Given enough classifiers...

\[p(\text{error}) = \sum_{i=0}^{\infty} \left(\frac{m}{i} \right) r^i (1-r)^{m-i} \quad r = 0.4 \]

What is the catch?

Assume each classifier makes a mistake with some probability (e.g. 0.4, that is a 40% error rate)

Assuming the decisions made between classifiers are independent, what will be the probability that we make a mistake (i.e. error rate) with three classifiers for a binary classification problem?

Obtaining independent classifiers

Where do we get \(m \) independent classifiers?
Idea 1: different learning methods

Training Data

learning alg → model 1

learning alg → model 2

learning alg → model m

decision tree
k-nn
perceptron
naïve bayes
gradient descent variant 1
gradient descent variant 2

Pros/cons?

Pros:
- Lots of existing classifiers already
- Can work well for some problems

Cons/concerns:
- Often, classifiers are not independent, that is, they make the same mistakes!
 - E.g. many of these classifiers are linear models
 - Voting won’t help us if they’re making the same mistakes

Idea 2: split up training data

Training Data

part 1 → learning alg → model 1

part 2 → learning alg → model 2

part m → learning alg → model m

Use the same learning algorithm, but train on different parts of the training data

Pros:
- Learning from different data, so can’t overfit to same examples
- Easy to implement
- Fast

Cons/concerns:
- Each classifier is only training on a small amount of data
- Not clear why this would do any better than training on full data and using good regularization
Idea 3: bagging

Training Data

Training Data 1 → learning alg → model 1

... → ... → ...

Training Data m → learning alg → model m

data generating distribution

Ideal situation

Training data 1

Training data 2

... → ...

Training data

data generating distribution

bagging

“Training” data 1

“Training” data 2

... → ...

Training data

Use training data as a proxy for the data generating distribution
sampling with replacements

"Training" data 1

pick a random example from the real training data

Training data

27

28

29

sampling with replacements

"Training" data 1

add it to the new "training" data

Training data

put it back (i.e. leave it) in the original training data

Training data
sampling with replacements

“Training” data 1

pick another random example

Training data

30

sampling with replacements

“Training” data 1

pick another random example

Training data

31

sampling with replacements

“Training” data 1

keep going until you’ve created a new “training” data set

Training data

32

bagging

create m “new” training data sets by sampling with replacement from the original training data set (called m “bootstrap” samples)

train a classifier on each of these data sets

to classify, take the majority vote from the m classifiers

33
bagging concerns

For a data set of size n, what is the probability that a given example will **NOT** be select in a “new” training set sampled from the original?

35

bagging concerns

What is the probability it isn’t chosen the first time?

$$1 - \frac{1}{n}$$

36

What is the probability it isn’t chosen the **any** of the n times?

$$(1 - \frac{1}{n})^n$$

Each draw is independent and has the same probability

37
When does bagging work

Let’s say 10% of our examples are noisy (i.e. don’t provide good information)

For each of the “new” data set, what proportion of noisy examples will they have?
- They’ll still have ~10% of the examples as noisy
- However, these examples will only represent about two-thirds of the original noisy examples

For some classifiers that have trouble with noisy classifiers, this can help

Bagging tends to reduce the variance of the classifier

By voting, the classifiers are more robust to noisy examples

Bagging is most useful for classifiers that are:
- Unstable: small changes in the training set produce very different models
- Prone to overfitting

Often has similar effect to regularization
Idea 4: boosting

<table>
<thead>
<tr>
<th>Data</th>
<th>Label</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0.2</td>
</tr>
</tbody>
</table>

“Training” data 2

<table>
<thead>
<tr>
<th>Data</th>
<th>Label</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.3</td>
</tr>
</tbody>
</table>

“Training” data 3

<table>
<thead>
<tr>
<th>Data</th>
<th>Label</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

“Strong” learner

Given
- a reasonable amount of training data
- a target error rate ε
- a failure probability p

A strong learning algorithm will produce a classifier with error rate $< \varepsilon$ with probability $1-p$

“Weak” learner

Given
- a reasonable amount of training data
- a failure probability p

A weak learning algorithm will produce a classifier with error rate < 0.5 with probability $1-p$

Weak learners are much easier to create!

Weak learners for boosting

<table>
<thead>
<tr>
<th>Data</th>
<th>Label</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Which of our algorithms can handle weights?

Need a weak learning algorithm that can handle weighted examples
boosting: basic algorithm

Training:
start with equal example weights

for some number of iterations:
- learn a weak classifier and save
- change the example weights

Classify:
- get prediction from all learned weak classifiers
- weighted vote based on how well the weak classifier did when it was trained (i.e. in relation to training error)

boosting basics

Start with equal weighted examples

Examples: E1 E2 E3 E4 E5

Learn a weak classifier:

Boosting

We want to reweight the examples and then learn another weak classifier

How should we change the example weights?

- decrease the weight for those we're getting correct
- increase the weight for those we're getting incorrect
Boosting

Learn another weak classifier:

- decrease the weight for those we’re getting correct
- increase the weight for those we’re getting incorrect

Examples:

Weights:

Classifying

weighted vote based on how well they classify the training data

weak_2.vote > weak_1.vote since it got more right
Notation

- x_i: example i in the training data
- w_i: weight for example i, we will enforce:
 - $w_i \geq 0$
 - $\sum_{i=1}^{n} w_i = 1$
- $\text{classifier}_k(x_i)$: +1/-1 prediction of classifier k example i

AdaBoost: train

for $k = 1$ to iterations:

- classifier$_k = \text{learn a weak classifier based on weights}$
- calculate weighted error for this classifier:
 \[\varepsilon_k = \sum_{i=1}^{n} w_i \cdot [\text{label} \neq \text{classifier}_k(x_i)] \]
- calculate “score” for this classifier:
 \[\alpha_k = \frac{1}{2} \log \left(\frac{1 - \varepsilon_k}{\varepsilon_k} \right) \]
- change the example weights:
 \[w_i = \frac{1}{Z} w_i \exp(-\alpha_k \cdot \text{label} \neq \text{classifier}_k(x_i)) \]
AdaBoost: train

classifier_k = learn a weak classifier based on weights

weighted error for this classifier is:

$$\epsilon_k = \sum_i w_i \cdot \mathbb{1}[\text{label}_i \neq \text{classifier}_k(x_i)]$$

- Between 0 (if we get all examples right) and 1 (if we get them all wrong)
- weighted sum of the errors/mistakes

What does this look like (specifically for errors between 0 and 1)?

AdaBoost: classify

$$\text{classify}(x) = \text{sign}\left(\sum_k \alpha_k \cdot \text{classifier}_k(x)\right)$$

What does this do?
AdaBoost: classify

\[
\text{classify}(x) = \text{sign}\left(\sum_{k=1}^{\text{boosting}} \alpha_k \cdot \text{classifier}_k(x) \right)
\]

The weighted vote of the learned classifiers weighted by \(\alpha \) (remember \(\alpha \) generally varies from \(-1\) to \(-1\) training error)

What happens if a classifier has error >50%

We vote the opposite!

AdaBoost: train, updating the weights

update the example weights

\[
w_i = \frac{1}{Z} w_i \exp(-\alpha_i \cdot \text{label}_i \cdot \text{classifier}_i(x))
\]

Remember, we want to enforce:

\[
w_i \geq 0 \quad \sum_{i=1}^{n} w_i = 1
\]

Z is called the normalizing constant. It is used to make sure that the weights sum to 1

What should it be?
AdaBoost: train

update the example weights

\[w_i = \frac{1}{Z} w_i \exp(-\alpha_k \cdot \text{label}_k \cdot \text{classifier}_k(x_i)) \]

What does this do?

Note: only change weights based on current classifier (not all previous classifiers)
AdaBoost: train

update the example weights

\[w_i = \frac{1}{Z} w_i \exp(-\alpha_k \cdot \text{label} \cdot \text{classifier}(x_i)) \]

What does the \(\alpha \) do?
- If the classifier was good (<50% error) \(\alpha \) is positive:
 - trust classifier output and move as normal
- If the classifier was bad (>50% error) \(\alpha \) is negative:
 - classifier is so bad, consider opposite prediction of classifier

AdaBoost justification

update the example weights

\[w_i = \frac{1}{Z} w_i \exp(-\alpha_k \cdot \text{label} \cdot \text{classifier}(x_i)) \]

Exponential loss!

\[l(y,y') = \exp(-yy') \]

AdaBoost turns out to be another approach for minimizing the exponential loss!

Other boosting variants
Start with equal weighted data set.

What would be the best line learned on this data set?

h \Rightarrow p(\text{error}) = 0.5 \text{ it is at chance}

This one seems to be the best.

How should we reweight examples?

This is a 'weak classifier': it performs slightly better than chance.
Boosting example

How should we reweight examples?

Boosting example

What would be the best line learned on this data set?

The strong (non-linear) classifier is built as the combination of all the weak (linear) classifiers.
AdaBoost: train

for k = 1 to iterations:
- classifier_k = learn a weak classifier based on weights
- weighted error for this classifier is:
- “score” or weight for this classifier is:
- change the example weights

What can we use as a classifier?

AdaBoost: train

for k = 1 to iterations:
- classifier_k = learn a weak classifier based on weights
- weighted error for this classifier is:
- “score” or weight for this classifier is:
- change the example weights
- Anything that can train on weighted examples
- For most applications, must be fast!
 Why?

AdaBoost: train

for k = 1 to iterations:
- classifier_k = learn a weak classifier based on weights
- weighted error for this classifier is:
- “score” or weight for this classifier is:
- change the example weights
- Anything that can train on weighted examples
- For most applications, must be fast!
 Why?

- Each iteration we have to train a new classifier

Boosted decision stumps

One of the most common classifiers to use is a decision tree:
- can use a shallow (2-3 level tree)
- even more common is a 1-level tree
 called a decision stump
- asks a question about a single feature

What does the decision boundary look like for a decision stump?
Boosted decision stumps

One of the most common classifiers to use is a decision tree:
- can use a shallow (2-3 level tree)
- even more common is a 1-level tree
 - called a decision stump
 - asks a question about a single feature

What does the decision boundary look like for boosted decision stumps?

Boosting in practice

Very successful on a wide range of problems

One of the keys is that boosting tends not to overfit, even for a large number of iterations

Using <10,000 training examples can fit >2,000,000 parameters!

Adaboost application example:
face detection
Rapid Object Detection using a Boosted Cascade of Simple Features

Paul Viola
Viola@soe.ucsc.edu
Mitsubishi Electric Research Labs
201 Broadway, 6th FL
Cambridge, MA 02139

Michael Jones
mjones@soe.ucsc.com
Computer Science
One Cambridge Center
Cambridge, MA 02142

Rapid object detection using a boosted cascade of simple features

To give you some context of importance:

or:

To give you some context of importance:

or:

Google

4 Types of "Rectangle filters"
(Similar to Haar wavelets Papageorgiou, et al.)

Based on 24x24 grid:
160,000 features to choose from

\[g(x) = \text{sum(WhiteArea)} - \text{sum(BlackArea)} \]
"weak" learners

\[F(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x) + \ldots \]
\[f_i(x) = \begin{cases}
 1 & \text{if } g_i(x) > \theta_i \\
 -1 & \text{otherwise}
\end{cases} \]

Example output

Solving other "Face" Tasks

Facial Feature Localization
Profile Detection
Demographic Analysis

"weak" classifiers learned
Bagging vs Boosting

Popular Ensemble Methods: An Empirical Study

David Opitz
Department of Computer Science
University of Minnesota
Minneapolis, MN 55455 USA

Richard Marlin
Computer Science Department
University of Minnesota
Duluth, MN 55812 USA

Boosting Neural Networks

Change in error rate over standard classifier

Ada-Boosting
Arcing
Bagging

White bar represents 1 standard deviation