BACKPROPAGATION

David Kauchak
CS158 — Fall

10/23/25

Admin

|
Assignment 7

Assignment 8 released on Monday. Start ASAP!

Neural network
| —

inputs

Individual

perceptrons/neurons

Neural network
[—

some inputs are

inputs provided /entered

10/23/25

Neural network

nputs

each perceptron computes and

calculates an answer

Neural network

those answers become inputs

for the next level

Neural network

nputs

finally get the answer after a

levels compute

A neuron/perceptron

Input x1
Weight w1
Weight w2
INPUY X2 ey
—— 3 Outputy

activation function

in= E WX,
i

gt x /

Weight w3

Weight wa

Input x4

10/23/25

Activation functions

hard threshold:

m=] 1 ifin>b
0 otherwise

sigmoid /1

X)=
80 1+e™

tanh x

Training

2
[2
- \ Output = x1 xor x2
b=2 >
2
b=2
2 2

Input x7

X1 X1 XOr X2

b=2

How do we learn the weights?

10

Learning in multilayer networks

Challenge: for multilayer networks, we don’t know what the
expected output/error is for the internal nodes!

how do we learn these weights?

whw/ ww/ wlw

W expected output?

perceptron neural network

Backpropagation: intuition
=

Gradient descent method for learning weights by
optimizing a loss function

1. calculate output of all nodes

calculate the weights for the output layer based on
the error

“backpropagate” errors through hidden layers

11

12

10/23/25

Backpropagation: intuition Backpropagation: intuition
| |
Key idea: propagate the
error back to this layer
We can calculate the actual error here \tl/%/
13 14
Backpropagation: intuition Backpropagation: intuition
| |
error \é// ~w3 * error
error for node is ~ wi * error Caleulate as normal, but weight the error
15 16

Backpropagation: the details Backpropagation: the details
|) |)
Gradient descent method for learning weights by X
optimizing a loss function Notation:
m: features/inputs
x1 h1
calculate output of all nodes b
P \ ot) d: hidden nodes
. |
. hi: output from
calculate the updates directly for the output layer
P Y P 4 Xm \/ hidden node k
hd
“backpropagate” errors through hidden layers How many weights (ignore bias for now)?
loss = 2%(}'—})2 squared error
17 18
Backpropagation: the details Backpropagation: the details
|] |]
Notation: Notation:
m: features/inputs m: features/inputs
x1 h1 x1 \ h1
" . v .
oot 9) d: hidden nodes \ oot (9) d: hidden nodes
va hi: output from / T hi: output from
Xm hidden nodes Xm hidden nodes
hd hd
d weights: denote vi How many weights?
19 20

10/23/25

Backpropagation: the details
=

Gradient descent method for learning weights by
optimizing a loss function

. 1 a2

argmin —(y-3?

amin,, 320-9)

calculate output of all nodes
calculate the updates directly for the output layer

“backpropagate” errors through hidden layers

Backpropagation: the details
|
Notation:
i m: features/inputs
x1 war h
war v R d: hidden nodes
out ()
~ v hi: output from
Xm hidden nodes
ha
d * m: denote wkj = waa: weight from input 3 to hidden
node 2
first index = hidden node ® wa: all the m weights associated with
second index = feature hidden node 4
21

22

Backpropagation: the details

1. Calculate outputs of all nodes
wi
x1 war h

out (9)

Xm

What are hk in terms of x and w2

Backpropagation: the details
[

1. Calculate outputs of all nodes

wn

x1 war h
w3r V!
out (7)
- va m
- =S
hd
J=1
h = f(w,"x)

fis the activation function

23

24

10/23/25

Backpropagation: the details Backpropagation: the details
| |
1. Calculate outputs of all nodes 1. Calculate outputs of all nodes
- h X1 hi
w3r Vi AT vi
out (9) out (9)
Xm en ’ Xm wen ’
hd hd
1
= f(w,-x)= x What is out in terms of h and v2
I+e™
fis the activation function
25

26

Backpropagation: the details Backpropagation: the details
| |
1. Calculate outputs of all nodes 2. Calculate new weights for output layer
wil h1 !
x1 war h " oot)
Z out (9)
vd hd
e
ha
. 1 5
. 1 argmin,, » —(y-3)°
out=f(v-h)=——r 22
l+e™
Want to take a small step towards decreasing loss. How?
27

28

10/23/25

Recall: derivative chain rule
|

d
= (G =2

29

Recall: derivative chain rule
|

d d
UGN f'(g() e

30

Output layer weights Output layer weights
= =
) [P L) o
argmin,, 320- 9 b) - or-—f(v»h»divk(y—/(v-h)) '
= - Fo-)L p oy oo
dioss _ d (l(v_7o):) ha Y v, ha
dv, dv\27 7 d
=~y W) h)-veh
SHE = £y o
= (= (y — < h))z y=f-
dw(z(y fo))) =—(y=f-h)f'(v-h)h, v-h=2vkhA
k
d
= (Vf("'h))di(y’f("'h)) The actual update is a step towards decreasing loss:
vk =v + hf' (- — f@-h)
31

32

10/23/25

Output layer weights Output layer weights
= =
ve=vethf' - DY-f@-R) W v . ve=vethf' - DO -f@W-)) wo v .
w15 oty
hd hd
What are each of these? size and direction of the
feature associated with how far from correct
Do they make sense individually? this weight slope of the ativation and which direction
function where input is at
33 34
Output layer weights Output layer weights
= =
ve=v+hf' - DO-fw-m)) W v . ve=v+hf'@-Dy-f@-h)

how far from correct
and which direction

(y=f(v-h)>0
(y=f(v-h)<0

35

out ()

how far from correct
and which direction

(y=f(v-h))>0 prediction < label: increase the weight

(y=f(v-h)<0

prediction > label: decrease the weight

bigger difference = bigger change

36

Output layer weights

|)
ve=vethf' - DY-f@-R) W v

out (9)

slope of the activation
function where input is at

smutter step

biggdf step

smaller step”

Output layer weights
S

ve=vethf' - DO -f@W-)) wo v

out (7)

size and direction of the
feature associated with
perceptron update: this weight
Wi =W+ X,
gradient descent update:

Wi =W, +Xy,0

37

38

Backpropagation: the details

Gradient descent method for learning weights by
optimizing a loss function

. 1 a2
argmin, , » =(y-3)
gmin,, 22 y-3
1. calculate output of all nodes
2. calculate the updates directly for the output layer

“backpropagate” errors through hidden layers

Backpropagation
[

3. “backpropagate” errors through hidden layers

win
x1 war h

Xm

argmin,, E%O' -9

Want to take a small step towards decreasing loss. How?

39

40

10/23/25

10

10/23/25

Hidden layer weights Hidden layer weights
|) |)
. s M Remember: wij is the weight for o s h
dloss d (1 - ::z o hidden node k from input j W:Z vi
=-(y=fm)f' v h)—v-h
d (1 dwy
=m(§(y*f(v<h))2) $=f(vh)
- *(}'*f(V'h))f‘(v-h)kahk derivative of the other vk components are not
d dw, affected by wij
=~ (= f)= (v £) d
dwy d
oy SO fE NI h g oo
==(y=f-m)—f(v-h) dw,
dw,
, ‘ d
SO SO h e e =SS G gl) e e
’ dw, wy
41 43
""’”zi(l(y_;.,z) dloss __d (l()_;,)z)
Hidden layer weights d 2T Wy B2
. d (1 2
- :ﬁ(%(v—j(vvhr) i (5(,\'ff(v-h>‘))
X " :(,v—ftv-hnd‘—i(xar(v-m) :0‘-/'<V‘h))ﬁh(y-/’<v“h))

= SO DRy~ fow,)
dw,q
——(y=F O R F Ry f (o, »x)iwl x chain rule
dwy

wk-x:zwij/
7

==(y=fm) [R f (W, x)x;

= —xjf'(we -)ve(f' (v - W)y = (v -)

=== - peny
v,

B YR ey
v,

What happened here?

=—hf'(v-D)(y - fv-h)

A L)
v,

4y

== @) f (v
S s

— = f I =L,
dw,
d
dw,
d .
=== W)y, =)
dw,

=== S ISy,

h!.

=== O) F s £,)=
vy

= —xf (W)vk(f' (v - h)(y = f(v - 1))

44

45

11

=== SN R Backpropagation
== fOemf ey, =
N J X5, m output layer hidden layer
==(y=fO-m)f'v-hyv, hy i
dj} out =—hf'@ - - fl@-h) = —xf ' (wic-)vif ' (v - W = f - h))
=7()‘7[(V.h))f.(v.h)vkm./(wk x)
Vi
' ol 2
== h)vlf-(w,”%wk.x What's different?
y
==y) e Yy f w0,
" m
w3t v
What is the slope vk with respect to wi; -
va
“am
Xm
ha
46 48
Backpropagation Backpropagation
| |
output layer hidden layer output layer hidden layer
= —hf'(v-)y — f(@-h)) = xif ' (we- Dvif (v - Wy = fw - h) = —hf'(v-h)(y — f(@-h)) = x5 (Wi)vef (v -)y = f (@ - 1)
——— o input output error ot o input o»:‘:‘j-‘/ error
slope
wn wh
X1 war h x1 war h
v v
wan war
out out
v va
Vi Vi
Xm slope of weight from hidden layer Xm how much do we how much of the
ha Wy to output layer hd need to change error came from this
hidden node
49

50

10/23/25

12

10/23/25

Backpropgation generalization

output layer

vk = v+ hef' (W -)& = f@ - h)

Vi = Vi + hkAmu

f'v-h)(y=f(v-h)) modified error

Backpropgation generalization

|)
output layer hidden layer
= vk + hkf'(v - h)(y — f(v-h)) | Wi = Wiy + x5, f (wk - x) vy f'(w) (v = f(v - h)

v, =v, +hA,, Wiy =Wy + X8,
A= f'0 W)= f(v-h) Ap= L' f'V-h)(y = f(v-h)

Can we write this more succinctly?

A,
derivative of error
input at node
51 52
Backpropgation generalization Backpropgation generalization
[[
output layer hidden layer output layer hidden layer
v = vk + hief'(v - W)y — F(w - B)) | Wi = wiy + 5, ok x) vy f'(0 1) (v = v -) Ve=vithA,, Wy =Wy + XA,
By = FOWO=Fh) | A= v v Oy = 1)
= fln A,
weight to output layer modified error of
Vo=V A, Wy =y A ovpur ayer
A= W= Foh) | A =000 @)= f(v-h) WUl * Ay
= v A, By = FCUTTEnt _inpun®, e
54

53

13

10/23/25

Backprop on multilayer networks
e

Anything different at this layer?

wewtinput*A,,,
crens = | (current _input)w,,

w=w+input*A

output

Backprop on multilayer networks
e

wewtinput* A,
AL

e = CUrrent _inpunw,,,, A,

w=w+input*A

output

What “errors” at the next layer does the
highlighted edge affect?

55

56

Backprop on multilayer networks

we=winput* A,
Ao = eurrent " inputyw,,

w=w+input* A

outpur

Backprop on multilayer networks
=

we=winput* A,
A, = [(current _input)w,

w=w+input * A

output

What “errors” at the next layer does the
highlighted edge affect?

57

58

14

Backprop on multilayer networks Backprop on multilayer networks
[[
W wrinpur* A,
Bt = 1":‘(UFENt _input) 3,8 s
W= winput*A,, w=w+input*A,,,,
A rene = S (current _input)w ..., A 0 Ao = [(current _inpun)w,,, A ..
w=wtinput*A,,,, w=weinput*A,,,,
59 60

Backprop on multilayer networks Multiple output nodes
| |
W= winput* A, A
e p , wewinput* A,
By = f current _input) v, et inpun’S
W wrinput A,
Apren = current _input)w,,,p, 8,
Backpropogation: R *A
- Calculate new weights and modified errors at output layer W= WHIPULT B s
- Recursively calculate new weights and modified errors on
hidden layers based on recursive relationship
- Update model with new weights How does multiple outputs change things?
61 62

10/23/25

15

10/23/25

Multiple output nodes Backpropagation implementation
|) |)
Output layer update:
Ve =Vt b (y=f(v-) f'(v-h)
:ifn*‘x;:,ﬁ}f}f},,pu,)g W Hidden layer update:
r—— Wy =Wy + X, 0w v f (v h)(y = f(v-h)
D = (Current Zinpur) W
w=w+input* A,,,",,,"
Any missing information for implementation?
How does multiple outputs change things?
63 64

Backpropagation implementation
[
Output layer update:

Ve =i+ (y= fh) £)

Hidden layer update:
Wy =Wy + X O 2w, f1)iy - fv-)

1. What activation function are we using

2. What is the derivative of that activation function

Activation function derivatives
|

sigmoid
1
s(x)=——
) 1+e™

5'(x) = s(x)(1 - s(x))
tanh

itanh()c) =1-tanh®x
dx

65

66

16

Learning rate
[

Output layer update:
Ve =V A0 (= f-h) f'(v-h)

Hidden layer update:
Wy =Wy + 11X,) S)y = f (v)
* Like gradient descent for linear classifiers, use a learning rate

* Often will start larger and then get smaller

Backpropagation implementation

Just like gradient descent!

for some number of iterations:
randomly shuffle training data
for each example:
Compute all outputs going forward

Calculate new weights and modified errors at output
layer

Recursively calculate new weights and modified errors on
hidden layers based on recursive relationship

Update model with new weights

67 68
Handling bias Handling bias
| |
wh Wit
x1 war h X1 war h
war V! wn V!
out out
va v
Wam fam
Xm Xm
1 — 1
welm1)
1. Add an extra feature hard-wired to 1 to all the
How should we learn the bias? examples
2. For other layers, add an extra parameter whose input is
always 1
69 70

10/23/25

17

10/23/25

Online vs. batch learning Batch learning
|) |)
for some number of iterations: for some number of iterations:
randomly shuffle training data randomly shuffle training data
for each example: initialize weight accumulators to O (one for each weight)
Compute all outputs going forward for each example:
Calculate new weights and modified errors at output layer Compute all outputs going forward
Recursively calculate new weights and modified errors on hidden layers Calculate new weights and modified errors at output layer
(oG @ A Gl Recursively calculate new weights and modified errors on hidden layers
Update model with new weights based on recursive relationship
Add new weights to weight accumulators
" Divide weight accumulators by number of examples
Online learning: update weights after each example
9+ up 9 P Update model weights by weight accumulators
Batch learning? . .
Process all of the examples before updating the weights
71 72
Many variations Challenges of neural networks?
| |
Momentum: include a factor in the weight update to keep moving in the P . .
direction of the previous update Picking network configuration
Mini-batch: .
Compromise between online and batch Can be slow to train for large networks and large
Avoids noisiness of updates from online while making more educated amounts of data
weight updates
Simulated annealing: Loss functions (including squared error) are generally
With some probability make a random weight update R
Reduce this probability over fime not convex with respect to the parameter space
73 74

18

10/23/25

History of Neural Networks
|
McCulloch and Pitts (1943) — introduced model of

artificial neurons and suggested they could learn
Hebb (1949) — Simple updating rule for learning
Rosenblatt (1962) - the perceptron model

Minsky and Papert (1969) — wrote Perceptrons

Bryson and Ho (1969, but largely ignored until 1980s--
Rosenblatt) — invented backpropagation learning for
multilayer networks

75 76

hitp://www.nytimes.com/2012/06/26 /technol
ogy/in-a-bi Keof id
of-machine-learning.htmi?z_r=0

77

19

