10/21/25

Admin

|
Assignment 7

NEURAL NETWORKS

D Kauchak
CS158 - Fall 2025

1 2
Perceptron learning algorithm Our Nervous System
B |
repeat until convergence (or for some # of iterations): _j Dendrites
for each training example (f1, f2, ..., fy, label): ! .
prediction=b+ 2; w,f; A I
| Ason

if prediction * label < 0: // they don't agree
for each wi:
wi = wi + f¥label

b =b + label

Why is it called the “perceptron” learning algorithm if) Neuron

what it learns is a line? Why not “line learning” algorithm? What do you know?

10/21/25

Our nervous system:
. . A neuron/perceptron
the computer science view
| O . |)
Input x1
Weight w1
__jy Dendrites the human brain is a large collection
\. of interconnected neurons
' n out xa _eight w2
o a NEURON is a brain cell : —————» Oupury
o they collect, process, and disseminate o)
Synapses electrical signals activation function
o they are connected via synapses Input x3 = Weight w3
o they FIRE depending on the conditions in= 2 WX,
of the neighboring neurons 7
Weight wa
Input x4 How is this a linear classifier
(i.e. perceptron)?
5 6

Hard threshold = linear classifier Neural Networks
| e |]
hard threshold: Neural Networks try to mimic the structure and function of our
g(in):{ 1 ifin>-b oupur=] 1T 3w +b>0 nervous system
0 otherwise 0 otherwise
People like biologically motivated approaches
x
x2
s output

7 8

10/21/25

Artificial Neural Networks
Node A Weight w Node B
[O— 0
Node (Neuron/perceptron) (perceptron) (perceptron)
© ouput = 1if E,w,x,+b>0
/O 0 otherwise
O_,_.—-—-—VO
\ W is the strength of signal sent between A and B.
(©)
Edge (synapses) If A fires and w is positive, then A stimulates B.
O If A fires and w is negative, then A inhibits B.
our approximation
9 10
Other activation functions Many other activation functions
| |

hard threshold:

g(in)={ 1 ifin>-b

0 otherwise

sigmoid
1
8=
l1+e

tanh x

why other threshold functions?

Rectified Linear Unit (RLU)

Softmax (for probabilities)

11

12

10/21/25

Neural network

Neural network

inputs

13

14

Neural network

nputs

Neural network

15

16

10/21/25

Neural network Activation spread
e e

17 18

Computation (assume O bias) Computation

| |
-0.05-0.02= -0.07

005 0.483 -
4 , 0.483%0.5+0.495=0.7365
0.03

@&‘
Ko B

0.495

-0.03+0.01=-0.02
1 ifin>-b
0 otherwise

|

19 20

http://www.youtube.com/watch?v=Yq7d4ROvZ6I

Neural networks Hidden units/layers
|) |)

Different kinds/characteristics of networks neuts

nputs inputs inputs
hidden units/layer
Feed forward networks
How are these different?

21 22

Hidden units/layers

Hidden units/layers

| |
inputs inputs
Can have many layers of inputs
hidden units of differing sizes
To count the number of layers,
you count all but the inputs
2-layer network 3-layer network
23 24

10/21/25

Alternate ways of visualizing Multiple outputs
| |
Sometimes the input layer will be drawn with nodes as well inputs
inpurs ,
o 1
Can be used to model multiclass
datasets or more interesting
2-layer network 2-layer network predictors, e.g. images
25 26
Multiple outputs Neural networks
| |
inputs Recurrent network
Output is fed back to input
Can support memory!
Good for temporal/sequential
input output data
(edge detection)
27 28

10/21/25

NN decision boundary NN decision boundary
|) |)
x1
. w2
. output
What does the decision boundary of a 2-layer network look like2
Is it linear?
What does the decision boundary of a perceptron look like? What types of things can and can’t it model?
Line (linear set of weights)
29 30

XOR
[

Input x1 —>

X

Output = x1 xor x2

B ——

Input x2 ——————>

X1 XOr x2

ouput = L ity wx+b>0
0 otherwise

Output = x1 xor x2

B —

X1 XOr X2

1 if X, +b>0
output = ! ErW’A’+ >
0 otherwise

31

32

10/21/25

What does the decision boundary look like?

1
Input X1 — 1
-1 \

a /v

Output = x1 xor x2

X1 XOr X2

What does the decision boundary look like?

1
Input X1 —— 1
-1 \

-1 /

Output = x1 xor x2

X1 XOr X2

What does this perceptron’s
decision boundary look like?

33 34
NN decision boundary NN decision boundary
[[
Input x1 Input x1
\ " \
Let x2 = O, then:
-05=0
x=-05 (without the bias)
35 36

10/21/25

What does the decision boundary look like?

1
[p— 1
a \ Output = x1 xor x2
b=-0.5 >
1
Inpot x2 e
b=-0.5

7 b=-0.5

X1 XOr X2

X1

What does this perceptron’s

NN decision boundary
=

1
[I ——
x2
b=-0.5
-1

Input x2
Let x2 = 0, then:
(-1

decision boundary look like? x1—05=0
x=05 (without the bias)
37 38
NN decision boundary What does the decision boundary look like?
|

1
INPUY X e |

x2

Input x2

Output = x1 xor x2

What operation does this
perceptron perform on the result?

39

40

10

10/21/25

Fill in the truth table OR
= =
Ry
—_—
41 42

What does the decision boundary look like?

Output = x1 xor x2

Input x1 —>
\ owpm = x1 xor x2
B /
Input x2 —P’

If either predicts positive,
example is positive

43

44

11

1
Input x1 ———— | 1
a \ pru' = x1 xor x2
-1 /
Input x2 —P‘

X1 XOr X2

What does the decision boundary look like?

[T p— 4
’ \ @Ouva = x1 xor x2
Input x2 @

linear splits of the
feature space

combination of
these linear spaces

45

46

This decision boundary?

@ Output
E—

Input x1 —>

Input x2 —P

ouput = L ity wx+b>0
0 otherwise

This decision boundary?
[

Input x1 —>
\@ Output
b=0.5

] /
Input x2 ——————>
b=-0.5

1 if X, +b>0
output = ! ErW’A’+ >
0 otherwise

47

48

10/21/25

12

This decision boundary?
= =
1
INput X1 oy | 0
A @\ Output a
b=-0.5 > \
A
, b=0.5
Input x2 > ! / b=0.5
b=-0.5
ouput = 1if 2 wx,+b>0
0 otherwise
49 50
NOR What does the decision boundary look like?
| |
Input x1 —— 3|
\ Output = x1 xor x2
-1
\‘ —_
/ b=0.5 Input x2 \@
combination of
linear splits of the these linear spaces
feature space
51 52

10/21/25

13

10/21/25

Three hidden nodes NN decision boundaries
| |

Theorem g (Two-Layer Networks are Universal Function Approxima-
tors). Let F be a continuous function on a bounded subset of D-dimensional
space. Then there exists a two-layer neural network F with a finite number
of hidden units that approximate F arbitrarily well. Namely, for all x in the
domain of F, |F(x) — E(x)| <e.

Put simply: two-layer networks can approximate
any function

53 54

NN decision boundaries Training
| |

For DT, as the tree gets larger, the model gets more

complex

2
[S —

B
) \ Output = x1 xor x2
The same is true for neural networks: b=t

f . _—
more hidden nodes = more complexity

B
b=t
' f
Adding more layers adds even more complexity (and Input x2 —————F>
b=t

much more quickly) X1 XOr X2

Good rule of thumb:

number of examples

number of 2-layer hidden nodes < How do we learn the weights2
number of dimensions

55 56

14

10/21/25

Training multilayer networks

perceptron learning: if the perceptron’s output is different than
the expected output, update the weights

gradient descent: compare output to label and adjust based on
loss function

Any other problem with these for general NNs2

perceptron neural network

Learning in multilayer networks
|)
Challenge: for multilayer networks, we don’t know what the

expected output/error is for the internal nodes!

how do we learn these weights?

! expected output?

neural network

57

58

Backpropagation: intuition

Gradient descent method for learning weights by
optimizing a loss function

1. calculate output of all nodes

2. calculate the weights for the output layer based on
the error

“backpropagate” errors through hidden layers

Backpropagation: intuition
=

ddd

We can calculate the actual error here

59

60

15

10/21/25

Backpropagation: intuition Backpropagation: intuition
| |
“backpropagate” the error:
g g g Key idea: propagate the g g g Assume all of these nodes were responsible
error back to this layer for some of the error
How can we figure out how much they were
responsible for?
61 62
Backpropagation: intuition Backpropagation: intuition
| |
error \#// w3 * error
ervor for node is ~ wi * error Caleulate as normal using this as the error
63 64

16

10/21/25

Backpropagation: the details Backpropagation: the details
| |
Gradient descent method for learning weights by Gradient descent method for learning weights by
optimizing a loss function optimizing a loss function
calculate output of all nodes calculate output of all nodes
calculate the updates directly for the output layer calculate the updates directly for the output layer
“backpropagate” errors through hidden layers “backpropagate” errors through hidden layers
What loss function? loss = EL(V— $)* squared error
x 2 i :
65 66

17

