
10/21/25

1

NEURAL NETWORKS
David Kauchak
CS158 – Fall 2025

1

Admin

Assignment 7

2

Perceptron learning algorithm

repeat until convergence (or for some # of iterations):
 for each training example (f1, f2, …, fn, label):

 if prediction * label ≤ 0: // they don’t agree
 for each wi:

 wi = wi + fi*label
 b = b + label

prediction = b+ wi fii=1

n
∑

Why is it called the “perceptron” learning algorithm if
what it learns is a line? Why not “line learning” algorithm?

3

Our Nervous System

Synapses

Axon

Dendrites

Synapses
+

+

+
-
-

(weights)

Nodes

Neuron

What do you know?

4

10/21/25

2

Our nervous system:
the computer science view

the human brain is a large collection
of interconnected neurons

a NEURON is a brain cell
¤ they collect, process, and disseminate

electrical signals
¤ they are connected via synapses
¤ they FIRE depending on the conditions

of the neighboring neurons

Synapses

Axon

Dendrites

Synapses
+

+

+
-
-

(weights)

Nodes

5

Output y

Input x1

Input x2

Input x3

Input x4

Weight w1

Weight w2

Weight w3

Weight w4

A neuron/perceptron

€

in = wi
i
∑ xi

€

∑

€

g(in)

activation function

How is this a linear classifier
(i.e. perceptron)?

6

Hard threshold = linear classifier

hard threshold:

€

∑

€

g(in)… output

x1

x2

xm

w1

w2

wm

g(in) = 1 if in > −b
0 otherwise

"
#
$

output =
1 if wixi + b > 0

i∑
0 otherwise

"
#
$

%$

7

Neural Networks

Neural Networks try to mimic the structure and function of our
nervous system

People like biologically motivated approaches

8

10/21/25

3

Artificial Neural Networks

Node (Neuron/perceptron)

Edge (synapses)

our approximation

9

W is the strength of signal sent between A and B.

If A fires and w is positive, then A stimulates B.

If A fires and w is negative, then A inhibits B.

Weight wNode A Node B

(perceptron) (perceptron)

output =
1 if wixi + b > 0

i∑
0 otherwise

"
#
$

%$

10

Other activation functions

hard threshold:

sigmoid

tanh x

€

g(x) =
1

1+ e−ax

g(in) = 1 if in > −b
0 otherwise

"
#
$

why other threshold functions?

11

Many other activation functions

Rectified Linear Unit (RLU)

Softmax (for probabilities)

12

10/21/25

4

Neural network

inputs

Individual

perceptrons/neurons

13

Neural network

inputs
some inputs are

provided/entered

14

Neural network

inputs

each perceptron computes and

calculates an answer

15

Neural network

inputs

those answers become inputs

for the next level

16

10/21/25

5

Neural network

inputs

finally get the answer after all

levels compute

17

http://www.youtube.com/watch?v=Yq7d4ROvZ6I

Activation spread

18

Computation (assume 0 bias)

0

1

0.5

-0.5

-1

0.5

0.5

1

0

1

1

g(in) = 1 if in > −b
0 otherwise

"
#
$

19

Computation

-1

1

0.05

0.03

-0.02

0.01

0.5

1

-0.05-0.02= -0.07

-0.03+0.01=-0.02

0.483

0.495

0.483*0.5+0.495=0.7365

0.676

20

http://www.youtube.com/watch?v=Yq7d4ROvZ6I

10/21/25

6

Neural networks
Different kinds/characteristics of networks

inputs

inputs inputs

How are these different?

inputs

21

Hidden units/layers

inputs

inputs

Feed forward networks

hidden units/layer

22

Hidden units/layers

inputs

Can have many layers of
hidden units of differing sizes

To count the number of layers,
you count all but the inputs…

23

Hidden units/layers

inputs

inputs

2-layer network 3-layer network

24

10/21/25

7

Alternate ways of visualizing

inputs

2-layer network

Sometimes the input layer will be drawn with nodes as well

inputs

2-layer network

25

Multiple outputs

inputs

Can be used to model multiclass
datasets or more interesting
predictors, e.g. images

0 1

26

Multiple outputs

input output
(edge detection)

27

Neural networks

Recurrent network

Output is fed back to input

Can support memory!

Good for temporal/sequential
data

inputs

28

10/21/25

8

NN decision boundary

€

∑

€

g(in)… output

x1

x2

xm

w1

w2

wm

What does the decision boundary of a perceptron look like?

Line (linear set of weights)

29

NN decision boundary

What does the decision boundary of a 2-layer network look like?
Is it linear?
What types of things can and can’t it model?

30

XOR

Input x1

Input x2

?

x1 x2 x1 xor x2
0 0 0
0 1 1
1 0 1
1 1 0

Output = x1 xor x2
?

?
?

?

?

b=?

b=?

output =
1 if wixi + b > 0

i∑
0 otherwise

"
#
$

%$

b=?

31

XOR

Input x1

Input x2

1

x1 x2 x1 xor x2
0 0 0
0 1 1
1 0 1
1 1 0

Output = x1 xor x2-1

-1

1

1

1

b=-0.5

b=-0.5

output =
1 if wixi + b > 0

i∑
0 otherwise

"
#
$

%$

b=-0.5

32

10/21/25

9

What does the decision boundary look like?

Input x1

Input x2

1

x1 x2 x1 xor x2
0 0 0
0 1 1
1 0 1
1 1 0

Output = x1 xor x2-1

-1

1

1

1

b=-0.5

b=-0.5

b=-0.5

33

What does the decision boundary look like?

Input x1

Input x2

1

x1 x2 x1 xor x2
0 0 0
0 1 1
1 0 1
1 1 0

Output = x1 xor x2-1

-1

1

1

1

b=-0.5

b=-0.5

b=-0.5

What does this perceptron’s
decision boundary look like?

34

NN decision boundary

x1

x2

Input x1

Input x2

b=-0.5

-1

1

(-1,1)

(without the bias)

Let x2 = 0, then:

−x1 − 0.5= 0
x1 = −0.5

35

NN decision boundary

x1

x2

Input x1

Input x2

b=-0.5

-1

1

36

10/21/25

10

What does the decision boundary look like?

Input x1

Input x2

1

x1 x2 x1 xor x2
0 0 0
0 1 1
1 0 1
1 1 0

Output = x1 xor x2-1

-1

1

1

1

b=-0.5

b=-0.5

b=-0.5

What does this perceptron’s
decision boundary look like?

37

x1

x2

(1,-1)

(without the bias)

NN decision boundary

Input x1

Input x2

1

-1

b=-0.5

Let x2 = 0, then:

x1 = 0.5
𝑥1− 0.5 = 0

38

x1

x2

NN decision boundary

Input x1

Input x2

1

-1

b=-0.5

39

What does the decision boundary look like?

Input x1

Input x2

1

x1 x2 x1 xor x2
0 0 0
0 1 1
1 0 1
1 1 0

Output = x1 xor x2-1

-1

1

1

1

b=-0.5

b=-0.5

b=-0.5

What operation does this
perceptron perform on the result?

40

10/21/25

11

Fill in the truth table

1

1 b=-0.5 out1 out2

0 0 ?
0 1 ?
1 0 ?
1 1 ?

41

OR

1

1 b=-0.5 out1 out2

0 0 0
0 1 1
1 0 1
1 1 1

42

What does the decision boundary look like?

Input x1

Input x2

1

x1 x2 x1 xor x2
0 0 0
0 1 1
1 0 1
1 1 0

Output = x1 xor x2-1

-1

1

1

1

b=-0.5

b=-0.5

b=-0.5

43

x1

x2

Input x1

Input x2

1

Output = x1 xor x2-1

-1

1

1

1

b=-0.5

b=-0.5

b=-0.5

If either predicts positive,
example is positive

44

10/21/25

12

x1

x2

Input x1

Input x2

1

Output = x1 xor x2-1

-1

1

1

1

b=-0.5

b=-0.5

b=-0.5

x1 x2 x1 xor x2
0 0 0
0 1 1
1 0 1
1 1 0

45

What does the decision boundary look like?

Input x1

Input x2

Output = x1 xor x2

linear splits of the
feature space

combination of
these linear spaces

46

This decision boundary?

Input x1

Input x2

?

Output?

?
?

?

?

b=?

b=?

output =
1 if wixi + b > 0

i∑
0 otherwise

"
#
$

%$

b=?

47

This decision boundary?

Input x1

Input x2

1

Output-1

-1
1

-1

-1

b=-0.5

b=-0.5

output =
1 if wixi + b > 0

i∑
0 otherwise

"
#
$

%$

b=0.5

48

10/21/25

13

This decision boundary?

Input x1

Input x2

1

Output-1

-1
1

-1

-1

b=-0.5

b=-0.5

output =
1 if wixi + b > 0

i∑
0 otherwise

"
#
$

%$

b=0.5

49

-1

-1
b=0.5 out1 out2

0 0 ?
0 1 ?
1 0 ?
1 1 ?

50

-1

-1
b=0.5 out1 out2

0 0 1
0 1 0
1 0 0
1 1 0

NOR

51

What does the decision boundary look like?

Input x1

Input x2

Output = x1 xor x2

linear splits of the
feature space

combination of
these linear spaces

52

10/21/25

14

Three hidden nodes

53

NN decision boundaries

Put simply: two-layer networks can approximate
any function

54

NN decision boundaries

For DT, as the tree gets larger, the model gets more
complex

The same is true for neural networks:
 more hidden nodes = more complexity

Adding more layers adds even more complexity (and
much more quickly)

Good rule of thumb:

number of 2-layer hidden nodes ≤
number of examples

number of dimensions

55

Training

Input x1

Input x2

?

x1 x2 x1 xor x2
0 0 0
0 1 1
1 0 1
1 1 0

Output = x1 xor x2
?

?
?

?

?

b=?

b=?

b=?

How do we learn the weights?

56

10/21/25

15

Training multilayer networks

perceptron learning: if the perceptron’s output is different than
the expected output, update the weights

perceptron/

linear model
neural network

Any other problem with these for general NNs?

gradient descent: compare output to label and adjust based on
loss function

w
w w

w w w

w wwwww

57

Learning in multilayer networks

Challenge: for multilayer networks, we don’t know what the
expected output/error is for the internal nodes!

expected output?

perceptron/

linear model
neural network

w
w w

w w w

w wwwww

how do we learn these weights?

58

Backpropagation: intuition

Gradient descent method for learning weights by
optimizing a loss function

1. calculate output of all nodes

2. calculate the weights for the output layer based on
the error

3. “backpropagate” errors through hidden layers

59

Backpropagation: intuition

We can calculate the actual error here

60

10/21/25

16

Backpropagation: intuition

Key idea: propagate the
error back to this layer

61

Backpropagation: intuition

“backpropagate” the error:

Assume all of these nodes were responsible
for some of the error

How can we figure out how much they were
responsible for?

62

Backpropagation: intuition

error

w1
w2

w3

error for node is ~ wi * error

63

Backpropagation: intuition

w3 * error

w4
w5

w6

Calculate as normal using this as the error

64

10/21/25

17

Backpropagation: the details

Gradient descent method for learning weights by
optimizing a loss function

1. calculate output of all nodes

2. calculate the updates directly for the output layer

3. “backpropagate” errors through hidden layers

What loss function?

65

Backpropagation: the details

Gradient descent method for learning weights by
optimizing a loss function

1. calculate output of all nodes

2. calculate the updates directly for the output layer

3. “backpropagate” errors through hidden layers

loss = 1
2
(y− ŷ)2

x
∑ squared error

66

