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MLE estimation for NB Maximum likelihood estimates
| B
P(Y)HI?(X( 1y) count(y) number of examples with label y
/o | p(y)= | number of I
total number of examples
/ \
o ‘\°\° - / \*
i » pro,:::::s'ic p(y) p(x[ l y) count(xi,y) number of examples with label y with feature xi = 1
% p(xi ! y) = count(y) number of examples with label
What are the MLE estimates
for these?
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Maximum likelihood estimates Maximum likelihood estimates
| |
count! count
P(y)=J 17(y)=J
n n
p(1) =2 p(1) =3/5
pl-1)=2 p(-1) =2/5
1 1 1 1 1 1
1 ) 1 1 ] 1
1 1 1 1 1 1
) 1 -1 [ 1 -1
) ) -1 ] 0 -1
5 6

Maximum likelihood estimates Maximum likelihood estimates
| |
count(x;,y) plxi =111 2 count(x;,y) plxi=111) 3/3
Pl =) kol ; P =y Aol o/3
Y plx2=1] 1) 2 Y plx2=1] 1) 2/3
p(x2=0] 1) 2 p(x2=0] 1) 1/3
1 1 1 1 1 1
1 () 1 1 ] 1
1 1 1 1 1 1
) 1 -1 ] 1 -1
() ] -1 ] 0 -1
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Maximum likeli

hood estimates

Maximum likelihood estimates

=] =]
m pxi=111) 3/3 m pxi=111) 3/3
p(x,y) =p(¥) np(xily) pix1 =01 1) 0/3 p(xy) =p() np(xily) plx1 =01 1) 0/3
j=1 plx2a=1] 1) 2/3 j=1 plx2a=1] 1) 2/3
px2=0] 1) 1/3 p(x2=0] 1) 1/3
1 1 1 1 1 1
. 5 Pt =1x5=1y=1)=" : T Pl =1x=1y=1)
. ; . . . . = pMpl, =1|Dp(x, =1]1)
o 1 a 0 1 - =3414%
) ) -1 ] 0 1 5 3
_ 6
T
9 10
Maximum likelihood estimates Maximum likelihood estimates
=] =]
m pxi=111) 3/3 m pxi=111) 3/3
p(x,y) =p(») l_[p(xily) pix1 =01 1) 0/3 p(x,y) =p(®») np(xily) pix1 =01 1) 0/3
j=1 pxa=1]1) 2/3 j=1 plx2=1] 1) 2/3
p(x2=0] 1) 1/3 p(x2=0] 1) 1/3
1 1 1 1 1
: . P =0x, =Ly=1=? , o . Pl =0x,=1Ly=1)
] : : : : : =p(plr, = 0] plx, =11 1)
o 1 -1 o 1 =l =i 0 * Z
o o Bl o 0 A s 3
=0 ®
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Maximum likelihood estimates Basic steps for probabilistic modeling
| ) | )
Full model trained p(1) =3/5 Probabilistic models
p(-1)= 2/5 St i Which model do we use,
ep 1: pick a model ! use,
i.e. how do we calculate
pxi=111) 3/3 plfeature, label)2
3 5 5 cita =1l ) 218 Step 2: figure out how to .
estimate the probabilities for !"OW do frain the model,
1 0 1 i.e. how to we we
1 1 1 plxi =11 -1) 0/2 the model estimate the probabilities
° T a plxz =11 -1) 1/2 for the model2
o o -1
Step 3 '(opiionql): deal with How do we deal with
overfitting overfitting?
13 14

Likelihood distribution Training: MLE
| |
The likelihood of the data, given the model parameters P(y)l_‘[l’(/": 52
) is: el
p(data|6) &
s
3 babilisti
I iy O )
Maximum Likelihood Estimation (MLE), picks the g
parameter as: 6 = argmax,p(data|@)
6 = argmaxgp(data|0) 6
15 16



MLE problems

|
plxi=111) 3/3
plx2=1]1) 2/3
p(x2=0] 1) 1/3

6 = argmaxgyp(data|0)

The MLE is completely driven by the training data

Priors

|

Coinl data: 3 Heads and 1 Tail

Coin2 data: 30 Heads and 10 tails
Coin3 data: 2 Tails

Coin4 data: 497 Heads and 503 tails

If someone asked you what the probability of heads
was for each of these coins, what would you say?

17

18

Posterior distribution MLE vs. Maximum posteriori
| |
We want to incorporate a prior belief of what the
probabilities might be
MLE 6 = argmaxgp(data|6)
p(B|data) .
qu'”f”"_‘ 0 = argmaxgp(0|data)
Maximum a posteriori principle, pick parameters that posteriori
maximize the posterior distribution:
8 = argmax,p(6|data) Both are methods for picking model parameters
19 20
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Maximum posteriori Maximum posteriori
= =
p(data|8)p(6)
=2 =
p(8|data) = 2 p(fldata) p(data)
21 22
Maximum posteriori Maximum posteriori
= =
likelihood of the data probability of different parameters,
under the model call the prior
What are each of these probabilities?
_ p(datal0)p©) _ p(datalf)p©)
p(0ldata) = o (data) p(0ldata) = o (data)
probability of seeing the data
(regardless of model)
23 24
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Priors Priors
| ) | )
likelihood of the data probability of different parameters,
6 = argmax, p(dat(z;l 0);)(6) under the model call the prior
p(data

6 = argmax,, p(data|0)p(0)

Does p(data) matter for the argmax?

What does MLE assume for a prior on the
model parameters?

25 26
Priors A better approach
[ [
likelihood of the dat: bability of diffe t ters,
under the model collthe pror e 0 = argmax, p(data|0)p(6)

6 = argmax,, p(data|6)p(0)

We can use any distribution we'd like.

likelihood(data) = | | py(x)
&

This allows us to impart addition bias
into the model

- Assumes a uniform prior, i.e. all © are equally likely!
- Relies solely on the likelihood

27 28



Another view on the prior Regularization vs prior
| |
Remember, the max is the same if we take the log:
0 = argmax , log(p(data | 0))+log(p(0))
0 = argmax, log(p(data 1 0))+ log(p(0)) gmax, log(p )+log(p(0)
likelihood based on the data prior
fit model bias
I < We can use any distribution we'd like. loss function based on the data regularizer
log-likelihood = Elug(p(x, )
il This allows us to impart addition bias
info the model . & 3
argmin,, , Eloss(yy') + Aregularizer(w)
i=l
Does this look like something we've seen before
(Hint, think gradient descent)?
29 30
Prior for NB Prior: another view
| |
0 = argmax, log(p(data 1 6)) +log(p(6))
Uniform prior Dirichlet prior PO % 3) = PO [ P10
1
/'/ MLE:  plx;1y)= count(x; y)
/ \ * ' count(y)
A=0 _
nereasne What happens to our likelihood if, for one of the
labels, we never saw a parficular feature?
_ count(x;,y) Iyv)= count(x,,y)+ A
Pl ly)= m Py count(y)+ possible _values _of _x,* A Goes to 0!
31 32




Prior: another view Smoothing
| ) | )
count(x,,y) = count(x;,y)
plx, ) = £2HY) 3 Pl 1y) = C2C6-Y)
count(y) > count(y)
£
g
count(x,,y)+ A P 1y)= count(x;,y)+ A
pOily)= - ! count(y)+ possible _values _of _x,* A
count(y)+ possible _values _of _x,* A )+ pos: - s_of _x;
for each label, pretend like Sometimes this is also called smoothing
Adding a prior avoids this! we've seen each feature value because it is seen as smoothing or interpolating
occur in A additional examples between the MLE and some other distribution
33 34
Priors Priors
| |

Coinl data: 3 Heads and 1 Tail

Coin2 data: 30 Heads and 10 tails
Coin3 data: 2 Tails

Coin4 data: 497 Heads and 503 tails

count(heads) + 4

heads) = mmm—
p(heads) totalflips + 21

Does this do the right thing in these cases?

Coinl data: 3 Heads and 1 Tail:
p(heads) = %: 0.667

Coin2 data: 30 Heads and 10 tails:
p(heads) = i—;: 0.738

Coin3 data: 2 Tails
p(heads) =%= 0.75

Coin4 data: 497 Heads and 503 tails

9;

(he d)—48—0497
plheads) = == 0.

p(heads) =

35

36

count(heads) + 1
totalflips + 21
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Maximum likelihood estimates Maximum likelihood estimates
| ) | )
count(x;,y)+A _ count(x;,y)+ A —
x1y)= i = 1y)= i =
Pty count(y)+ possible _values _of _x,* A A= Pty count(y)+ possible _values _of _x,* A A=1
1 1 1 px1=111) 2 1 1 1 pxi=111) 4/5
1 0 1 px1=011) 2 1 [ 1 px1=011) 1/5
1 1 1 plxz=1] 1) 2 1 1 1 plxz=1] 1) 3/5
o 1 -1 p(x2=0] 1) 2 o 1 -1 p(x2=0] 1) 2/5
o o =il o [ il
37 38

Avoids zero probability events! Basic steps for probabilistic modeling
| |
plxi =11 1) 3/3 Probabilistic models
MLE Ha=0] 1) 073 Which model d
: pi ich model do we use,
ke =11 1) 2/3 Step 1: pick @ model i.e. how do we calculate
px2=0] 1) 1/3 plfeature, label)?
Step 2: figure out how to .
estimate the probabilities for :“:v;‘:: :;u\:‘eﬂ\l/eem()dell
plxi=111) 4/5 the model estimate the probabilities
plx1 =01 1) 1/5 for the model2
smoothed /prior
plxz=1] 1) 3/5 5 i
ox2=0] 1) 2/5 Step -34(ophonu|): deal with How do we deal with
overfitting overfitting?
39 40
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Joint models vs conditional models A first try: linear
| ) | )
We've l?een trying "o model the joint distribution (i.e. the data p(y | xl’xz"“’xm) =X W WX, AW, X, + b
generating distribution):
Any problems with this2
p('xl Xy ,-.-,Xm,y)
However, if all we're interested in is classification, why not directly
model the conditional distribution: - Nothing constrains it to be a probability
| - Could still have combination of features and
P(y xlsxzv"vxm) weight that exceeds 1 or is below O
41 42
The challenge Odds ratio
| |
XoW, + WoXy +o kW, X, +b p(y | xnxz’mvxm) Rather than predict the probability, we can predict the ratio of 1/0
(positive /negative)
Linear model probability
+e0 1 Predict the odds that it is 1 (true): How much more likely is 1 than 0.
Does this help us?
We like linear models! P, X X,) = PAIx, X, X,y) =X W WX+ W, X+ b
POlx.x,,...x,) 1-P(llx,x,....x,)
Can we transform the probability info
a function that ranges over all
- valves? °
43 44
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Odds ratio

=
XW, +WoX, oW, X, +D

mm

P(1x,x,,....x,)

1-P(11x.x,.....x,)

Odds ratio

x,) P(1x,x,,....x,)

P(l1x,,x,,....x,) > P(0 | x, x.
1-P(11x.x,.....x,,)

P, X50000%,) > 1= P16 500%,)

Linear model odds ratio We're trying to find some transformation that transforms
. . the odds ratio fo a number that is - fo +%
Does this suggest another transformation?
Where is the dividing line
between class 1 and
class O being selected? odds ratio
o o
45 46
Log odds (logit function)
S (x)=log, x |
XW +WoXy + .+ W, X, +b log- LU XisFar )
e = BT PAIx 5,0y,
25456789 wi12 . . .
Linear regression odds ratio
4o 4o
How do we get the probability of
an example?
47 48
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Log odds (logit function) Logistic function

| |
PAIx,%5000%,) - R
Iogm = WX, WX, +L W, X, +D logistic = 1-*l _
PO Xys ) prpinsnytcomnash 1 e
1= P11, %, 0%,) /
P(lx,.x,,....x,) = (1= P(L1 x;.x,,....x,, ))e" 5" Atath
anyone
P(L1x, X0 X,) = [oeoanize

49 50

Logistic regression Training logistic regression models
| |

How would we classify examples once we had a trained How should we learn the parameters for logistic

model? regression (i.e. the w's and b)?

logiP(llx” = WXy + WXy e WX, D P(1lx,,x.
1-P(11x,,x,, N o log— L2220l oy WX, A W, X, + D
1-P(11x.x,,....x,) 7
If the sum > O then p(1)/p(0) > 1, so positive parameters
if the sum < O then p(1)/p(0) < 1, so negative P X,y %%, ) =
1 ¥asee ) =

Still a linear classifier (decision boundary is a line)

51 52
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MLE logistic regression MLE logistic regression
| |
Find the p that the likelihood (or log-likelihood) of the datas .
log- likelihood = E—log(l+e'\“““1”“"1‘ Hntnet))
=
log-likelihood = ' log(p(x,)) We want to maximize, i.e.
P
" \ 1 MLE(data) = argmax,, , log- likelihood(data)
= - assume labels 1, -1
:argmax“_,,E—log(He A Ty
=
= E—log(l ) —argmin, , ilog(l R
i=1 X il
Look familiar? Hint: anybody reading the book?
53 54
MLE logistic regression logistic regression: three views
| ] | ]
axgminm,,Elog(1+e""““:‘“1‘:‘ ) o i’;l(l]zlc,; X X)) _ Wo 49,0, 4 WyXy + ot w,x, linear classifier
=l o
Surrogate loss functions:
. (0/1) — conditional model
Zero/.one £ (y,9) =1[yg < 0] P, XyX,) = logistic
Hinge: #97(y,9) = max{0,1 - y9}
1
istic: (log) = —:
Logistic: 29y, 9) iog2 log (1+ exp[—yg])
Exponential: £o9(y,9) = exp[-yf] . ) linear model
Squared: £59(y,9) = (y— 9)° argmin,, , E]OEU L minimizing logistic loss
=
56

55
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Overfitting Regularization/prior
= =

argmin log(1 4 ¢~ mmemantesnyias) B
g u.»E 8( ) . 3 (W Wy Xy e, X, ) .
= argmin,,, » log(1+e¢ )+ Aregularizer(w,b)
i=1
If we minimize this loss function, in practice, the results

aren’t great and we tend to overfit
or

argmin, , E]og(l ey oo (5 bY)

Solution? “
What are some of the regularizers we know?
57 58
Regularization /prior Regularization/prior
| |
L2 regularization: L2 regularization:
argmin,,,_bElog(l+e""‘“’"l*“'l‘l* ,+w‘m,\mo/v))+AHWH2 argmin“._hElog(1+e’v’(‘v‘“wﬁw WW\HW)*'AHWHZ
=l i=1
Gaussian prior: os Gaussian prior:
Gaussians are defined by § )
a mean (1) and a variance . — 3 (WX Wy Xy Wy Xy ) 1 2
argmin,, » log(l+¢ ™M=ttty 4 W
3 L
plwb)~ P
_— N Does the A make sense? =257
59 60
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Regularization/prior

Regularization/prior
[

| )
L2 regularization: L1 regularization:
argmin,,_,, Elog(l I ,47,))+ AHWHZ axgminw‘,, Elog(l + e—\v(\«,rz+w2r2+...+wm,\mur])+ }LHWH
i=l i=l
Gaussian prior: Laplacian prior:
argmin, , Slog(+¢” ""H%HWHZ J {
T plwb) ~ *
1 f
A=
20° T N
61 62
Regularization/prior LT vs. L2
| |
L1 regularization: L1 = Laplacian prior L2 = Gaussian prior
RAZ

n
argminw,,, Elog(l +eﬂ,(w,\3+w3,\3+. 4

i=l

Laplacian prior:

argmin,, i log(l + ettty leH
o

i=l

A=

Y

63

64




10/16/25

A digression:
Logistic regression regression vs. classification

Raw data  Label features  Label

. . ‘o
Why is it called logistic regression? classification:

] desscaton.
iscrete (some finite

l:l ° » set of labels)

7o

]

]

It is a classifierg?

regression: real
PAlx,. X, X,)
1-P(lx;,x,,...0X,,)

features value
log =WX, WX+ W, X, +b

65 66

linear regression Linear regression
= =

Given some points, find the line

that best fits/explains the data Learn a line h that minimizes some loss/error

function:
(e} ° Our model is a line, i.e. we're °
assuming a linear relationship ) error(h) =7
° between the feature and the
label value (¢} Sum of the individual errors:
response response
w ° ) ° ® " o
9 error(h) = 2 -
° h(y)=wx, +b o .
o
(o] Qoo 0/1 loss!
f
! feature (x)

How can we find this line?

67 68
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Error minimization Linear regression
| ) | )
How do we find the minimum of an equation?
. error(hy =Y. |y, = h(f)
errorhy = 3" |y, = h(f) Sl
= ° s
Take the derivative, set to O and solve (going to be a min
or a max) °
response
[¢) " 2
Any problems here? o error(h) = E‘:I()’, =h(f))
o
Ideas? 9le squared error is convex!
feature
' Squared:  £(y9) = (y—9)
69 70
Linear regression Linear regression
| ] | ]
Learn a line h that minimizes an error We'd like to minimize the error
° function: Find w; and wg such that the error is minimized
° n
error(h) =y (v, ~h(f)) . .
° error(hy = (v, = f, + W)’
response in the case of a 2d line:
]
9 ° error(h) = E;(y’ —(wx, +Wu))2 We can solve this in closed form
Cle
function for a line
feature
71 72
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Multiple linear regression

If we have m features, then we have a line in m dimensions

h(f)=wo+w fi+wofo 4t w, f,

weights

Multiple linear regression
[

We can still calculate the squared error like before

h(f)= Wo+w fi+wofo+.. 4w, f,

error(h) = 3" (v, = (o + W fy + Wy fy 4 4w, )

Still can solve this exactly!

73

74

Logistic function Logistic regression
| |
| Find the best fit of the data based on a logistic
logistic = —
I+e™
7l P P
75 76
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Step 3 (optional): deal with
overfitting overfitting?

Basic steps for probabilistic modeling

Probabilistic models

Step 1: pick a model Which model do we use,

i.e. how do we calculate
plfeature, label)2

Step 2: figure out how to
estimate the probabilities for
the model

How do train the model,
i.e. how to we we
estimate the probabilities
for the model?

How do we deal with

Probabilistic models summarized

Two classification models:
Naive Bayes (models joint distribution)
Logistic Regression (models conditional distribution)

= In practice this tends to work better if all you want to do is
classify

Priors/smoothing /regularization
Important for both models
In theory: allow us to impart some prior knowledge

In practice: avoids overfitting and often tune on
development data

77

78
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