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David Kauchak
CS158 – Fall 2025
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MLE estimation for NB

p(y) p(xi | y)probabilistic 
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What are the MLE estimates 
for these?
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Maximum likelihood estimates

p(xi | y) =
count(xi, y)
count(y)

p(y) = count(y)
n

number of examples with label y

total number of examples

number of examples with label y with feature x i = 1

number of examples with label
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Maximum likelihood estimates

x1 x2 label

1 1 1

1 0 1

1 1 1

0 1 -1

0 0 -1

p(y) = count(y)
n

p(1)  = ?
p(-1) = ?
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Maximum likelihood estimates

x1 x2 label

1 1 1

1 0 1

1 1 1

0 1 -1

0 0 -1

p(y) = count(y)
n

p(1)  = 3/5
p(-1) = 2/5
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Maximum likelihood estimates

x1 x2 label

1 1 1

1 0 1

1 1 1

0 1 -1

0 0 -1

p(xi | y) =
count(xi, y)
count(y)

p(x1 = 1 | 1) ?

p(x1 = 0 | 1) ?

p(x2 = 1| 1) ?

p(x2 = 0| 1) ?
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Maximum likelihood estimates

x1 x2 label

1 1 1

1 0 1

1 1 1

0 1 -1

0 0 -1

p(xi | y) =
count(xi, y)
count(y)

p(x1 = 1 | 1) 3/3

p(x1 = 0 | 1) 0/3

p(x2 = 1| 1) 2/3

p(x2 = 0| 1) 1/3
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Maximum likelihood estimates

x1 x2 label

1 1 1

1 0 1

1 1 1

0 1 -1

0 0 -1

p(x1 = 1 | 1) 3/3

p(x1 = 0 | 1) 0/3

p(x2 = 1| 1) 2/3

p(x2 = 0| 1) 1/3

𝑝(𝑥, 𝑦) = 𝑝(𝑦)(
!"#

$

𝑝(𝑥%|𝑦)

𝑝(𝑥# = 1, 𝑥& = 1, 𝑦 = 1) =	?

9

Maximum likelihood estimates

x1 x2 label

1 1 1

1 0 1

1 1 1

0 1 -1

0 0 -1

p(x1 = 1 | 1) 3/3

p(x1 = 0 | 1) 0/3

p(x2 = 1| 1) 2/3

p(x2 = 0| 1) 1/3

p(x, 𝑦) = 𝑝(𝑦)(
!"#

$

𝑝(𝑥%|𝑦)

𝑝 𝑥# = 1, 𝑥& = 1, 𝑦 = 1
                  = 	𝑝 1 𝑝 𝑥# = 1	 1)𝑝 𝑥& = 1	 1)

= '
(
	 ∗ 1	 ∗ &

'

= )
#(
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Maximum likelihood estimates

x1 x2 label

1 1 1

1 0 1

1 1 1

0 1 -1

0 0 -1

p(x1 = 1 | 1) 3/3

p(x1 = 0 | 1) 0/3

p(x2 = 1| 1) 2/3

p(x2 = 0| 1) 1/3

𝑝(𝑥, 𝑦) = 𝑝(𝑦)(
!"#

$

𝑝(𝑥%|𝑦)

𝑝(𝑥# = 0, 𝑥& = 1, 𝑦 = 1) =	?
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Maximum likelihood estimates

x1 x2 label

1 1 1

1 0 1

1 1 1

0 1 -1

0 0 -1

p(x1 = 1 | 1) 3/3

p(x1 = 0 | 1) 0/3

p(x2 = 1| 1) 2/3

p(x2 = 0| 1) 1/3

𝑝(𝑥, 𝑦) = 𝑝(𝑦)(
!"#

$

𝑝(𝑥%|𝑦)

𝑝 𝑥# = 0, 𝑥& = 1, 𝑦 = 1
	 = 𝑝 1 𝑝 𝑥# = 0	 1)𝑝 𝑥& = 1	 1)

= '
(
	 ∗ 0	 ∗ &

'

= 0 L
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Maximum likelihood estimates

x1 x2 label

1 1 1

1 0 1

1 1 1

0 1 -1

0 0 -1

p(x1 = 1 | 1) 3/3

p(x2 = 1| 1) 2/3

p(x1 = 1 | -1) 0/2

p(x2 = 1| -1) 1/2

p(1)  = 3/5
p(-1) = 2/5

Full model trained!

13

Basic steps for probabilistic modeling

Which model do we use, 
i.e. how do we calculate 
p(feature, label)?

How do train the model, 
i.e. how to we we 
estimate the probabilities 
for the model?

How do we deal with 
overfitting?

Probabilistic models

Step 1: pick a model

Step 2: figure out how to 
estimate the probabilities for 
the model

Step 3 (optional): deal with 
overfitting

14

Likelihood distribution

The likelihood of the data, given the model parameters 
(Θ) is: 

Maximum Likelihood Estimation (MLE), picks the 
parameter as:

𝑝(𝑑𝑎𝑡𝑎|𝜃) likelihood of the data, 
given the current model

𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥!𝑝(𝑑𝑎𝑡𝑎|𝜃)

15

Training: MLE

probabilistic 
model

tra
in

tra
in

in
g 

da
ta p(y) p(xi | y)

p(y) p(xi
j=1

m

∏ | y)

𝜃

𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥*𝑝(𝑑𝑎𝑡𝑎|𝜃)

16
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MLE problems

p(x1 = 1 | 1) 3/3

p(x1 = 0 | 1) 0/3

p(x2 = 1| 1) 2/3

p(x2 = 0| 1) 1/3

The MLE is completely driven by the training data

𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥!𝑝(𝑑𝑎𝑡𝑎|𝜃)
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Priors

Coin1 data: 3 Heads and 1 Tail
Coin2 data: 30 Heads and 10 tails

Coin3 data: 2 Tails
Coin4 data:  497 Heads and 503 tails

If someone asked you what the probability of heads 
was for each of these coins, what would you say?

18

Posterior distribution

We want to incorporate a prior belief of what the 
probabilities might be

𝑝(𝜃|𝑑𝑎𝑡𝑎)
given the data, how likely are 
different model parameters

Maximum a posteriori principle, pick parameters that 
maximize the posterior distribution:

𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥!𝑝(𝜃|𝑑𝑎𝑡𝑎)

19

MLE vs. Maximum posteriori

𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥!𝑝(𝜃|𝑑𝑎𝑡𝑎)

𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥!𝑝(𝑑𝑎𝑡𝑎|𝜃)MLE

Maximum 
posteriori

Both are methods for picking model parameters 

20
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Maximum posteriori

(Hint: Bayes’ rule)𝑝 𝜃 𝑑𝑎𝑡𝑎 = ?

21

Maximum posteriori

𝑝 𝜃 𝑑𝑎𝑡𝑎 = 8 𝑑𝑎𝑡𝑎 𝜃 8(9)
8(:;<;)
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Maximum posteriori

𝑝 𝜃 𝑑𝑎𝑡𝑎 = 8 𝑑𝑎𝑡𝑎 𝜃 8(9)
8(:;<;)

 

What are each of these probabilities?

23

Maximum posteriori

𝑝 𝜃 𝑑𝑎𝑡𝑎 = 8 𝑑𝑎𝑡𝑎 𝜃 8(9)
8(:;<;)

 

likelihood of the data 
under the model

probability of different parameters,
call the prior

probability of seeing the data 
(regardless of model)

24
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Priors

θ = argmaxθ
p(data |θ )p(θ )

p(data)

Does p(data) matter for the argmax?

25

Priors

θ = argmaxθ p(data |θ )p(θ )

likelihood of the data 
under the model

probability of different parameters,
call the prior

What does MLE assume for a prior on the 
model parameters?

26

Priors

θ = argmaxθ p(data |θ )p(θ )

likelihood of the data 
under the model

probability of different parameters,
call the prior

- Assumes a uniform prior, i.e. all Θ are equally likely!
- Relies solely on the likelihood

27

A better approach

θ = argmaxθ p(data |θ )p(θ )

likelihood(data) = pθ (xi )
i=1

n

∏ We can use any distribution we’d like.

This allows us to impart addition bias 
into the model

28
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Another view on the prior

θ = argmaxθ log(p(data |θ ))+ log(p(θ ))

Remember, the max is the same if we take the log:

log- likelihood = log(p(xi ))
i=1

n

∑
We can use any distribution we’d like.

This allows us to impart addition bias 
into the model

Does this look like something we’ve seen before 
(Hint, think gradient descent)?

29

Regularization vs prior

θ = argmaxθ log(p(data |θ ))+ log(p(θ ))

argminw,b loss(yy ')
i=1

n

∑ +λregularizer(w)

loss function based on the data

likelihood based on the data

regularizer

prior
fit model bias

30

Prior for NB

θ = argmaxθ log(p(data |θ ))+ log(p(θ ))

Uniform prior Dirichlet prior

p(xi | y) =
count(xi, y)
count(y)

λ= 0
increasing

p(xi | y) =
count(xi, y)+λ

count(y)+ possible_ values_of _ xi *λ

31

Prior: another view

p(x1, x2,..., xm, y) = p(y) p(xi
j=1

m

∏ | y)

What happens to our likelihood if, for one of the 
labels, we never saw a particular feature?

p(xi | y) =
count(xi, y)
count(y)MLE:

Goes to 0!

32
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Prior: another view

p(xi | y) =
count(xi, y)+λ

count(y)+ possible_ values_of _ xi *λ

p(xi | y) =
count(xi, y)
count(y)

Adding a prior avoids this!

33

Smoothing

tra
in

in
g 

da
ta

for each label, pretend like 

we’ve seen each feature value 
occur in λ additional examples

p(xi | y) =
count(xi, y)
count(y)

Sometimes this is also called smoothing 
because it is seen as smoothing or interpolating 
between the MLE and some other distribution

p(xi | y) =
count(xi, y)+λ

count(y)+ possible_ values_of _ xi *λ

34

Priors

Coin1 data: 3 Heads and 1 Tail
Coin2 data: 30 Heads and 10 tails

Coin3 data: 2 Tails
Coin4 data:  497 Heads and 503 tails

Does this do the right thing in these cases?

𝑝 ℎ𝑒𝑎𝑑𝑠 =
𝑐𝑜𝑢𝑛𝑡 ℎ𝑒𝑎𝑑𝑠 + 𝜆
𝑡𝑜𝑡𝑎𝑙𝑓𝑙𝑖𝑝𝑠 + 2𝜆

35

Priors

Coin1 data: 3 Heads and 1 Tail:

Coin2 data: 30 Heads and 10 tails:

Coin3 data: 2 Tails

Coin4 data:  497 Heads and 503 tails

𝑝 ℎ𝑒𝑎𝑑𝑠 =
𝑐𝑜𝑢𝑛𝑡 ℎ𝑒𝑎𝑑𝑠 + 𝜆
𝑡𝑜𝑡𝑎𝑙𝑓𝑙𝑖𝑝𝑠 + 2𝜆

𝑝 ℎ𝑒𝑎𝑑𝑠 =
4
6
= 0.667

𝑝 ℎ𝑒𝑎𝑑𝑠 =
31
42

= 0.738

𝑝 ℎ𝑒𝑎𝑑𝑠 =
3
4
= 0.75

𝑝 ℎ𝑒𝑎𝑑𝑠 =
498
1002

= 0.497

36
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Maximum likelihood estimates

x1 x2 label

1 1 1

1 0 1

1 1 1

0 1 -1

0 0 -1

p(x1 = 1 | 1) ?

p(x1 = 0 | 1) ?

p(x2 = 1| 1) ?

p(x2 = 0| 1) ?

p(xi | y) =
count(xi, y)+λ

count(y)+ possible_ values_of _ xi *λ
ƛ = 1

37

Maximum likelihood estimates

x1 x2 label

1 1 1

1 0 1

1 1 1

0 1 -1

0 0 -1

p(x1 = 1 | 1) 4/5

p(x1 = 0 | 1) 1/5

p(x2 = 1| 1) 3/5

p(x2 = 0| 1) 2/5

p(xi | y) =
count(xi, y)+λ

count(y)+ possible_ values_of _ xi *λ
ƛ = 1

38

Avoids zero probability events!

p(x1 = 1 | 1) 4/5

p(x1 = 0 | 1) 1/5

p(x2 = 1| 1) 3/5

p(x2 = 0| 1) 2/5

smoothed/prior

p(x1 = 1 | 1) 3/3

p(x1 = 0 | 1) 0/3

p(x2 = 1| 1) 2/3

p(x2 = 0| 1) 1/3

MLE

39

Basic steps for probabilistic modeling

Which model do we use, 
i.e. how do we calculate 
p(feature, label)?

How do train the model, 
i.e. how to we we 
estimate the probabilities 
for the model?

How do we deal with 
overfitting?

Probabilistic models

Step 1: pick a model

Step 2: figure out how to 
estimate the probabilities for 
the model

Step 3 (optional): deal with 
overfitting

40
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Joint models vs conditional models

p(x1, x2,..., xm, y)

We’ve been trying to model the joint distribution (i.e. the data 
generating distribution):

However, if all we’re interested in is classification, why not directly 
model the conditional distribution:

p(y | x1, x2,..., xm )

trying to model the data 

generating distribution

direct model for classification

41

A first try: linear

p(y | x1, x2,..., xm ) = x1w1 +w2x2 +...+wmxm + b

- Nothing constrains it to be a probability
- Could still have combination of features and 
weight that exceeds 1 or is below 0

Any problems with this?

42

The challenge

Linear model
+∞

-∞

1

0

probability

p(y | x1, x2,..., xm )

We like linear models! 

Can we transform the probability into 
a function that ranges over all 

values? 

x1w1 +w2x2 +...+wmxm + b

43

Odds ratio

Rather than predict the probability, we can predict the ratio of 1/0 
(positive/negative)

Predict the odds that it is 1 (true): How much more likely is 1 than 0.

Does this help us?

P(1 | x1, x2,..., xm )
P(0 | x1, x2,..., xm )

=
P(1 | x1, x2,..., xm )
1−P(1 | x1, x2,..., xm )

= x1w1 +w2x2 +...+wmxm + b

44



10/16/25

12

Odds ratio

Linear model
+∞

-∞

+∞

0

odds ratio

Where is the dividing line 
between class 1 and 
class 0 being selected?

€ 

P(1 | x1,x2,...,xm )
1− P(1 | x1,x2,...,xm )

x1w1 +w2x2 +...+wmxm + b

45

Odds ratio

Does this suggest another transformation?€ 

P(1 | x1,x2,...,xm )
1− P(1 | x1,x2,...,xm )

€ 

P(1 | x1,x2,...,xm ) >1− P(1 | x1,x2,...,xm )

€ 

P(1 | x1,x2,...,xm ) > P(0 | x1,x2,...,xm )

0    1     2    3    4    5    6     7     8    9   ….

odds ratio

We’re trying to find some transformation that transforms 

the odds ratio to a number that is -∞  to +∞

46

0    1     2    3    4    5    6     7     8    9   ….

47

Log odds (logit function)

Linear regression
+∞

-∞

x1w1 +w2x2 +...+wmxm + b

+∞

-∞

odds ratio

€ 

log
P(1 | x1,x2,...,xm )

1− P(1 | x1,x2,...,xm )

How do we get the probability of 
an example?

=

48
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Log odds (logit function)

log P(1 | x1, x2,..., xm )
1−P(1 | x1, x2,..., xm )

= w1x2 +w2x2 +...+wmxm + b

P(1 | x1, x2,..., xm )
1−P(1 | x1, x2,..., xm )

= ew1x2+w2x2+...+wmxm+b

P(1 | x1, x2,..., xm ) = (1−P(1 | x1, x2,..., xm ))e
w1x2+w2x2+...+wmxm+b

P(1 | x1, x2,..., xm ) =
1

1+ e−(w1x2+w2x2+...+wmxm+b)

…
anyone 

recognize 
this?

49

Logistic function

logistic = 1
1+ e−x

50

Logistic regression

How would we classify examples once we had a trained 
model?

If the sum > 0 then p(1)/p(0) > 1, so positive

if the sum < 0 then p(1)/p(0) < 1, so negative

Still a linear classifier (decision boundary is a line)

log P(1 | x1, x2,..., xm )
1−P(1 | x1, x2,..., xm )

= w1x2 +w2x2 +...+wmxm + b

51

Training logistic regression models

How should we learn the parameters for logistic 
regression (i.e. the w’s and b)?

log P(1 | x1, x2,..., xm )
1−P(1 | x1, x2,..., xm )

= w1x2 +w2x2 +...+wmxm + b

P(1 | x1, x2,..., xm ) =
1

1+ e−(w1x2+w2x2+...+wmxm+b)

parameters

52
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MLE logistic regression

log- likelihood = log(p(xi ))
i=1

n

∑

= log 1
1+ e−yi (w1x2+w2x2+...+wmxm+b)
"

#
$

%

&
'

i=1

n

∑

= − log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑

assume labels 1, -1

Find the parameters that maximize the likelihood (or log-likelihood) of the data:

53

MLE logistic regression

log- likelihood = − log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑

We want to maximize, i.e.

MLE(data) = argmaxw,b log- likelihood(data)

= argmaxw,b − log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑

= argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑

Look familiar?  Hint: anybody reading the book?

54

MLE logistic regression

Surrogate loss functions:

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑

55

logistic regression: three views

€ 

log
P(1 | x1,x2,...,xm )

1− P(1 | x1,x2,...,xm )
= w0 + w1x2 + w2x2 + ...+ wmxm

€ 

P(1 | x1,x2,...,xm ) =
1

1+ e−(w0 +w1x2 +w2x2 +...+wmxm )

linear classifier

conditional model
logistic

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑
linear model 
minimizing logistic loss

56
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Overfitting

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑

If we minimize this loss function, in practice, the results 
aren’t great and we tend to overfit

Solution?

57

Regularization/prior

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑ +λregularizer(w,b)

or

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑ − log(p(w,b))

What are some of the regularizers we know?

58

Regularization/prior

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑ +λ w 2

L2 regularization:

Gaussian prior:

p(w,b) ~  

Gaussians are defined by 

a mean (μ) and a variance 
(σ2)

59

Regularization/prior

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑ +λ w 2

L2 regularization:

Gaussian prior:

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑ +
1
2σ 2 w 2

λ =
1
2σ 2Does the λ make sense?

60
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Regularization/prior

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑ +λ w 2

L2 regularization:

Gaussian prior:

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑ +
1
2σ 2 w 2

λ =
1
2σ 2

61

Regularization/prior

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑ +λ w

L1 regularization:

Laplacian prior:

p(w,b) ~  

62

Regularization/prior

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑ +λ w

L1 regularization:

Laplacian prior:

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑ +
1
σ

w

𝜆 =
1
𝜎

63

L1 vs. L2

L1 = Laplacian prior L2 = Gaussian prior

64
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Logistic regression

Why is it called logistic regression?
It is a classifier??

log P(1 | x1, x2,..., xm )
1−P(1 | x1, x2,..., xm )

= w1x2 +w2x2 +...+wmxm + b

65

A digression: 
regression vs. classification

Raw data Label

0

0

1

1

0

extract
features

f1, f2, f3, …, fn

f1, f2, f3, …, fn

f1, f2, f3, …, fn

f1, f2, f3, …, fn

f1, f2, f3, …, fn

features Label

classification: 
discrete (some finite 
set of labels)

regression: real 
value

66

linear regression

Given some points, find the line 

that best fits/explains the data

Our model is a line, i.e. we’re 

assuming a linear relationship 
between the feature and the 

label value

How can we find this line?

f1

response 

(y)

h(y) = w1x1 + b

67

Linear regression

Learn a line h that minimizes some loss/error 
function:

€ 

error(h) = ?

feature (x)

response 

(y)

Sum of the individual errors:

€ 

error(h) = yi − h( fi)i=1

n
∑

0/1 loss!

68
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Error minimization

How do we find the minimum of an equation?

Take the derivative, set to 0 and solve (going to be a min 
or a max)

Any problems here?

Ideas?

€ 

error(h) = yi − h( fi)i=1

n
∑

69

Linear regression

€ 

error(h) = (yi − h( fi))
2

i=1

n
∑

feature

response € 

error(h) = yi − h( fi)i=1

n
∑

squared error is convex!
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Linear regression

Learn a line h that minimizes an error 

function:

€ 

error(h) = (yi − h( fi))
2

i=1

n
∑

error(h) = (yi − (w1x1 +w0 ))
2

i=1

n
∑

in the case of a 2d line:

function for a line
feature

response
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Linear regression

We’d like to minimize the error
Find w1 and w0 such that the error is minimized

We can solve this in closed form
€ 

error(h) = (yi − (w1 f i + w0))
2

i=1

n
∑
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Multiple linear regression

If we have m features, then we have a line in m dimensions

€ 

h( f ) = w0 + w1 f1 + w2 f2 + ...+ wm fm

weights

73

Multiple linear regression

We can still calculate the squared error like before

€ 

error(h) = (yi − (w0 + w1 f1 + w2 f2 + ...+ wm fm ))
2

i=1

n
∑

Still can solve this exactly!

€ 

h( f ) = w0 + w1 f1 + w2 f2 + ...+ wm fm

74

Logistic function

logistic = 1
1+ e−x

75

Logistic regression

Find the best fit of the data based on a logistic

76
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Basic steps for probabilistic modeling

Which model do we use, 
i.e. how do we calculate 
p(feature, label)?

How do train the model, 
i.e. how to we we 
estimate the probabilities 
for the model?

How do we deal with 
overfitting?

Probabilistic models

Step 1: pick a model

Step 2: figure out how to 
estimate the probabilities for 
the model

Step 3 (optional): deal with 
overfitting
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Probabilistic models summarized

Two classification models:
¤Naïve Bayes (models joint distribution)
¤ Logistic Regression (models conditional distribution)

n In practice this tends to work better if all you want to do is 
classify

Priors/smoothing/regularization
¤ Important for both models
¤ In theory: allow us to impart some prior knowledge
¤ In practice: avoids overfitting and often tune on 

development data
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