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Probabilistic Modeling Probabilistic models
o

| ]
Probabilistic models define a probability distribution

over features and labels:
Model the data with a probabilistic

© model
& g
¢ T yellow, curved, no lec, 60z, banana M '°’°b°:'| mm) ( 0.004
P model: specifically, learn p(features, label) medet 0.00002
odels yellow, curved, no leaf, 6oz, apple M | _teatures fabel = O

»

plfeatures, label)

p(features, label) tells us how likely
these features and this example are

training data

For each label, ask for the probability under the model
Pick the label with the highest probability
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Basic steps for probabilistic modeling
|
Probabilistic models

Which model do we use,
i.e. how do we calculate
plfeature, label)2

Step 1: pick a model

Step 2: figure out how to
estimate the probabilities for
the model

How do train the model,
i.e. how to we we
estimate the probabilities
for the model?

Step 3: (optional): deal with How do we deal with

Basic steps for probabilistic modeling

Probabilistic models

Which model do we use,
i.e. how do we calculate
plfeature, label)2

Step 1: pick a model

Step 2: figure out how to
estimate the probabilities for
the model

How do train the model,
i.e. how to we we
estimate the probabilities
for the model2

Step 3 (optional): deal with How do we deal with

overfitting overfitting? overfitting overfitting?
5 6
Some math Step 1: pick a model
| ] | ] =
p(features,label) = p(y)| | p(x;1y,%,,...., X))
p(features,label) = p(x,,x,,....X,,,y) 1,:[ ! !
So, far we have made NO assumptions about the data
= pMP(x,Xyenns X, 1Y) P, 1y, X, %, ,000X,, )
_ ~ How many entries would the probability distribution table
= POIPOYINIP (e Xy 1y ) have if we tried to represent all possible values (e.g. for
the wine data set)2
= PP 1Y)p(xy 13,2 P (s, 19,5,,X,)
=pO] [Pt 13,5100
=l
7 8



10/7/25

Full distribution tables
|

(] 0 [¢] o (] L
0 0 [¢] 1 L
1 0 [¢] o (] L
1 0 [¢] 1 L
(] 1 [¢] [¢] L
0 1 [¢] 1 L

Wine problem:
® all possible combination of features

= ~7000 binary features

= Sample space size: 27000 = 2

27000

819625523770065529475725647805580929364462721864021 610886260081 6097132874749204352087401101862
690842327501724605231129395523505905454421 4554772509509096507889478094683592939574112569473438

619121 1869421

36049115624034999.471 441 6090573084242931 39621 1995367937301 2944795600248333570738998392029910322
346598036 740098017 9712420 8 589784519525848553710885
81956317370007438051674111891 34617501 4845217679842967628422873731 274221 22022517597 535994839257
02987 121620778878.48185522928196541766009803989

1 4
4662263487685 052030494889072089785 4285485316686 174660658185
609066484950801 176955575199211750751 1496728590822558547771 447242334900
764026321760892113552561241194538702680299044001 8385850576719369689759366 1 21 356866838680023840
93256738077501891 4703049621 5099698385397 52071 549396339237 20287592041 51729.49370790977853625108

1

243881 122302

921229795384868355483535710603407789177.4170263636562027269554375177807.41 31 3455101 8100094688094
0781122057380335371124632958916237089580476224595091825301 636909236240671 4116443316561 59628058

3720783439888562390892028440902553829376

Any problems with this?

10

Full distribution tables
|

(] 0 (o] (] *
0 0 0 1 0
1 0 [¢] [¢] *
1 0 0 1 *
(] 1 [¢] [¢] *
(] 1 0 1 0

- Storing a table of that size is impossible

- How are we supposed to learn/estimate each entry
in the table?

Step 1: pick a model
p(features,label) = p(y)ﬁp(x, Iy, %50 X))

So, far we have made NO assumptions about the data
Model selection involves making assumptions about the data
We did this before, e.g. assume the data is linearly separable

These assumptions allow us to represent the data more compactly
and to estimate the parameters of the model

11

12
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An aside: independence

Two variables are independent if one has nothing to do
with the other

For two independent variables, knowing the value of one
does not change the probability distribution of the other
variable (or the probability of any individual event)

the result of the toss of a coin is independent of a roll of a die

the price of tea in England is independent of the whether or
not you pass ML

independent or dependent?
=

Catching a cold and whether it’s raining currently in NY
Miles per gallon and driving habits
Height and longevity of life

Ice cream sales and shark attacks

13 14
Independent variables Independent variables
| ] | ]
How does independence affect our probability How does independence affect our probability
equations/properties? equations/properties?
If A and B are independent (written A IL B ) If A and B are independent (written A IL B )
P(AB) =2 P(A,B) = P(A)P(B)
P(A|B) =2 P(A|B) = P(A)
P(BIA) =2 P(B|A) = P(B)
How does independence help us?
15 16
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Independent variables
| )
If A and B are independent

P(A,B) = P(A)P(B)

P(A|B) = P(A)

P(B|A) = P(B)

Reduces the storage requirement for the distributions

Reduces the complexity of the distribution

Reduces the number of probabilities we need to estimate

Conditional Independence

Dependent events can become independent given certain other events
Examples,
height and length of life (or ice cream and shark attacks)

“correlation” studies

= size of your lawn and length of life

If A, B are conditionally independent given C (written A 1L B |C)
P(AB|C) = P(A|C)P(B|C)
P(A|B,C) = P(A|C)
P(B|AC) = P(B|C)
but P(A,B) # P(A)P(B)

17

18

Naive Bayes assumption Naive Bayes assumption
- m - m
p(features,label) = p(y)Hp(x( 1Y, X5 X)) p(features,label) = p(y)Hp(x, Iy, %50 X))
A il
POy, %,0,%5,00,X,,) = p(x; 1) P Y,x, Xy e X)) = p(x; 1Y)
. . Assumes feature i is independent of the the other
What does this assume? features given the label (i.e. is conditionally independent
given the label)
For the wine problem?

19

20



Naive Bayes assumption
=

PO 1,2, X550 X,) = p(x; 1Y)

Assumes feature i is independent of the the other
features given the label

Assumes the probability of a word occurring in a review
is independent of the other words given the label

For example, the probability of “pinot” occurring is
independent of whether or not “wine” occurs given that
the review is about “chardonnay”

Is this assumption true?

Naive Bayes assumption
| )

PO Y32y, ) = PO 1)
For most applications, this is not true!

For example, the fact that “pinot” occurs will probably
make it more likely that “noir” occurs (or other compound
phrases like “San Francisco”)

However, this is often a reasonable approximation:

POy, X250, %) = p(x; 1)

21

22

Naive Bayes model
[

p(features,label) = p(y)H plx 1y, X, X)

=l
- p(y)np(x, ly)  noive bayes asumption
j=1

p(xi|y) is the probability of a particular feature value given the label

How do we model this2

- for binary features

- for discrete features, i.e. counts
- for real valued features

p(x|y)
| ]

Binary features:

[ if x.=1
! if x biased coin toss!

X ly)=
O3 1Y) 1-6, otherwise

Other features:
Could use a lookup table for each value, but doesn't generalize well

Better, model as a distribution:

- gaussian (i.e. normal) distribution

- poisson distribution

- multinomial distribution (more on this later)

23

24
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Basic steps for probabilistic modeling
|

Probabilistic models
Which model do we use,

i.e. how do we calculate
plfeature, label)2

Step 1: pick a model

Step 2: figure out how to
estimate the probabilities for
the model

How do train the model,
i.e. how to we we
estimate the probabilities
for the model?

Step 3 (optional): deal with How do we deal with

Obtaining probabilities

8000000000

We've talked a lot about probabilities, but not where
they come from

How do we calculate p(x;|y) from training data?
What is the probability of surviving the titanic?
What is the probability that a review is about Pinot Noir2

What is the probability that a particular review is about
Pinot Noir2

overfitting overfitting?
25 26
Obtaining probabilities Estimating probabilities
| |
What is the probability of a pinot noir review?
()
& p(x;1y) We don’t know!
2 N m ( | )
babilisti X
1: » pmm:dle:m p(y)Hp(xl 1) P LY We can estimate it based on data, though:
£ B
= : number of reviews labeled pinot noir
total number of reviews
plx, 1)
This is called the maximum likelihood estimation. Why?
27 28
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Maximum Likelihood Estimation (MLE)

Maximum likelihood estimation picks the values for the
model parameters that maximize the likelihood of the
training data

You flip a coin 100 times. 60 times you get heads
and 40 times you get tails.

What is the MLE estimate for heads?

Likelihood

The likelihood of a data set is the probability that a
particular model (i.e. a model and estimated
probabilities) assigns to the data

likelihood(data) = | | p,(x)
i

for each example how probable is it under the model

= 2
p(heud) 0.60 Why' the model parameters (e.g. probability of heads)
29 30
Likelihood Likelihood
| |
You flip a coin 100 times. 60 times you get heads and You flip a coin 100 times. 60 times you get heads and
40 times you get tails. 40 times you get tails.
What is the likelihood of this data with ©=p(head) = 0.6 2 What is the likelihood of this data with ©=p(head) = 0.6 2
likelihood(data) = Hpu(x,) likelihood(data) = Hp“ (x)
il @
0.60%° * 0.40*° = 5.908465121038621e-30
for each example how probable is it under the model
60 heads with p(head) = 0.6 40 tails with p(tail) = 0.4
the model parameters (e.g. probability of heads)
31 32
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MLE example
|

Can we do any better? likelihood(datu):H p(x;)
0.60%° * 0.404° = 5.908465121038621e-30

60 heads with p(head) = 0.6 40 tails with p(tail) = 0.4

What about p(head) = 0.52

MLE example
[

Can we do any better? likelihood(data):l_[ px)
0.60% * 0.404° = 5.908465121038621e-30

60 heads with p(head) = 0.6 40 tails with p(tail) = 0.4

0.50%° * 0.50° =7.888609052210118e-31

60 heads with p(head) = 0.5 40 tails with p(tail) = 0.5

33

34

MLE example
[

Can we do any better? likelihood(dala)=l_[ plx)
0.60%° * 0.404° = 5.908465121038621e-30

60 heads with p(head) = 0.6 40 tails with p(tail) = 0.4

What about p(head) = 0.72

MLE example
[

Can we do any better? likelihur)d(dam)=l_[ plx)
0.60% * 0.40%° = 5.908465121038621e-30

60 heads with p(head) = 0.6 40 tails with p(tail) = 0.4

0.70% * 0.30%° = 6.176359828759916e-31

60 heads with p(head) = 0.7 40 tails with p(tail) = 0.3

35

36
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MLE Example Maximum Likelihood Estimation (MLE)
| ) | )
. The maximum likelihood estimate for a model
parameter is the one that maximizes the likelihood of
o the training data
'g n
MLE =argmax, [ T py()
5 o i
Often easier to work with log-likelihood:
MLE = argmax,log([ [ p,(x))
oo de o o dn aw 0w ok ca w on om da e on o o e on 0w i-i Why is this ok?
(heads &
P ) =argmax, EIOE(P(X,))
=
37

38

Calculating MLE
[

The maximum likelihood estimate for a model

parameter is the one that maximize the likelihood of
the training data

MLE = argmax, E log(p(x,))

=1

Given some training data, how do we calculate the MLE2

You flip a coin 100 times. 60 times you get heads and 40 times you get tails.

Calculating MLE
[

You flip a coin 100 fimes. 60 fimes you get heads and 40 times you get tails.

log-likelihood = ¥ log(p(x,))

= 601log(p(heads)) +40log(p(tails))

=601log(6)+40log(1-0)

MLE = argmax, 60 log(0) +40log(1 - 6)

How do we find the max?

39

40

10
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Calculating MLE

Calculating MLE

| ) | )
You flip @ coin 100 times. 60 times you get heads and 40 times you get tails. You flip a coin n times. a times you get heads and b times you get tails.
d d
—601og(0)+401log(1-6)=0 —alog(0)+blog(1-0)=0
0 2(6) 2(1-6) 0 2(6) 2(1-6)
0_40 _
0 1-60
40 _60
1-6 0
g-_4
400 = 60 - 606 a+b
1006 = 60
60
O0=—r1 Yay!
w00
41 42
MLE estimation for NB Maximum likelihood estimates
| |
p(y)l_[p(x, ly) count(y) number of examples with label y
- p(Y) - total number of examples
\‘O\(\
)
5 babilisti
; » pmm:dle:s ic P(Y) P(x[ I y) count(xi,y) number of examples with label y with feature xi = 1
:g p(xi ! y) = count(y) number of examples with label
What are the MLE estimates
for these?
What does training a NB model then involve?
How difficult is this to calculate?
43 44

11
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Naive Bayes classification
[

NB Model
yellow, curved, no leaf, 60z, banana » oot b » 0.004

PO [Pt 19

jel

Given an unlabeled example: yellow, curved, no lecf, 6oz predict the label

How do we use a probabilistic model for classification/prediction?

b

Probabilistic models

probabilistic

yellow, curved, no leaf, 60z, banana  mm
model:

ellow, curved, no leaf, 6oz, apple  MID  | Liseatres, label

PO [px 1)

j=t

label = argmax ¢, PO] [ P51

1

pick largest

45 46
Generative Story g,___ NB generative story g,___
| |
To classify with a model, we're given an example and we obtain Nu e
the probability p(})l;‘[p()u, 1)
We can also ask how a given model would generafe a document
What is the generative story for the NB model?
This is the “generative story” for a model
Looking at the generative story can help understand the model
We also can use generative stories to help develop a model
47 48

12
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NB generative story Q_ NB decision boundary
| |
4 ("')1;[” 1y label = argmax ..., PO)] [ p(x, 1)
e
Pick a label according to p(y)
roll a biased, num_labels-sided die
What does the decision boundary for
For each feature: NB look like if the features are binary?
Flip a biased coin:
if heads, include the feature
if tails, don’t include the feature
What about for modeling wine reviews?
49 50
Some math Some more math
| |

label = log(argmax ., PO] | P, 13)

= argmax ,, log(p(») + Y, log(p(x; 1))

=

= argmax ¢, log(p(y)+ Y 3, log(p(x; 1))+ X, log(1 - p(x; 1))

otherwise

labels = argmax .., log(p(y)) + Ex log(p(x; 1))+, log(1- p(x; 1y))

= argmax ., log(p(y) + Y 3, log(p(x, 1)+ (1= x)log(1 = p(x; 1)

=
(because x: are binary)

=argmax ;. log(p(y)) + E.v, log(p(x; 1) = x;log(1 - p(x; 1 y) +log(1- p(x; 1y)
=

.
- argmax ., 102(PON + 3, 10&(%)* log(1- p(x, 1)

51

52

13
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And...

| ]
labels = argmax o, Jog(p(r)+ S'x, k)g(M) +log(1= p(x, 1)
= 1=p(x;1y)

= argmax ., log(p()+ Y log(1 - p(x, 1)+ Y, lg(%)

What does this look like?

And...
=

labels = argmax o, Joe(p(y)+ S'x, log(%) +log(1-p(x, 1)
i=l - i

= argmax ,,,,,log(p(y)) + Y, log(1 - p(x; 1Y)+ Y, log(%)

*wi

b + Xi

What are the weights2

Linear model Il

53 54
NB as a linear model NB as a linear model
| |
How likely this feature is to How likely this feature is to
be 1 given the label be 1 given the label
w, = log P 1y) W, = log px;1y)
1=p(x 1) 1=p(x1y)
How likely this feature is to How likely this feature is to
be O given the label be O given the label
When is this big/small2 - low magnitude weights indicate there isn't much difference
- larger weights (positive or negative) indicate feature is important
55 56

14



Maximum likelihood estimation
|

Intuitive

Sets the probabilities so as to maximize the
probability of the training data

Problems?
Overfitting!
Amount of data
= particularly problematic for rare events

Is our training data representative

Basic steps for probabilistic modeling
| )

Probabilistic models
Which model do we use,

i.e. how do we calculate
plfeature, label)2

Step 1: pick a model

Step 2: figure out how to

estimate the probabilities for How do train the model,

i.e. how to we we
the model estimate the probabilities
for the model2

Step 3 (optional): deal with How do we deal with
overfitting overfitting?

57

58

Coin experiment
[

LAW OF LARGE NUMBERS IN AVERAGE OF DIE ROLLS
s

AVERAGE CONVERGES 10 EXPECTED UnLUE OF

FTT R ——

59

60
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Back to parasitic gaps
|
Say the actual probability is 1,/100,000

We don't know this, though, so we're estimating it from a small
data set of 10K sentences

What is the probability that we have a parasitic gap sentence in

Back to parasitic gaps
|
p(not_parasitic) = 0.99999

p(not_parasitic)'°°%° = 0.905 is the probability of us NOT finding
one

Then probability of us finding one is ~10%

90% of the time we won't find one and won't know anything

our sample? (or assume p(parasitic) = 0)
10% of the time we would find one and incorrectly assume the
probability is 1/10,000 (10 times too large!)
Solutions?
61 62
Priors
|
Coinl data: 3 Heads and 1 Tail
Coin2 data: 30 Heads and 10 tails
Coin3 data: 2 Tails
Coin4 data: 497 Heads and 503 tails
If someone asked you what the probability of heads
was for each of these coins, what would you say?
63
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