
CS158 - Assignment 9

Faster Naive Bayes? Say it ain’t so...
Due: Sunday, November 9th by 11:59pm

http://www.hadoopwizard.com/what-is-hadoop-a-light-hearted-view/

For this assignment we’re going to dive into how we can implement some of the machine learning
algorithms and tools in MapReduce to make them parallelizable.

MapReduce on paper

Viewing problems within the MapReduce framework can take a bit of practice. In addition, because
these jobs run on a cluster, it can be very challenging to debug. Therefore, it is even more critical1

to think through your MapReduce problems before you start coding them.

To give you practice with this, for this assignment we will write pseudocode to solve a few problems
within the MapReduce framework.

A pseudocode description of a MapReduce problem should include the following for both the map

function AND the reduce function:

• The types for the input key/value pairs AND the output key/value pairs (that’s four types).
You should use the built-in hadoop types, specifically one of Text, IntWritable, LongWritable,

DoubleWritable and BooleanWritable

1I know you all know that it’s critical for normal programming too!
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• Pseudocode describing what needs to happen in the function. These often will just be one
or two statements. I don’t want you to write actual code, but you should provide enough
detail that someone reading it can understand exactly what the function should do and could
implement it based on your pseudocode.

For example, for our word counting example, the following would be a reasonable submission:

- map

Input: key = LongWritable, value = Text

Output: key = Text, value = IntWritable

* split up the value text into words

* for each word, add an output key/value pair of <word, 1>

- reduce

Input: key = Text, value = IntWritable (or Iterator<IntWritable>, either way of

writing this is fine for me)

Output: key = Text, value = IntWritable

* calculate the sum for each of the values associated with the key

* add an output key/value pair of <key, sum>, that is the word and how many times it

occurred

Write MapReduce pseudcode for the following problems. You will be graded on how well you follow
the guidelines, how appropriate your solution is to the MapReduce framework and the quality of
your descriptions. Note, for some of these problems you may have to write more than one pair of
map/reduce functions.

1. Anagrams

Given a file containing text, the program should output key/value pairs where the value is a
comma separated list of lines in the file that are anagrams, i.e. use exactly the same letters
(ignoring spaces). The output key is up to you and will depend on your implementation. For
example:

Input:

captain over rome

lives

cat

banana

emperor octavian

act

tac

elvis
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Output:

<some_key> cat, act, tac

<some_key> elvis, lives

<some_key> emperor octavian, captain over rome

<some_key> banana

2. K-NN (almost)

Given a CSV file containing a list of training examples (like we’ve been using all along in
this class ) the program should calculate the distance from each example in the file from a
particular test example (which we’ll assume is hard-coded into the code). The output from
the program should be pairs of label/distance where label is the label of the training example
and distance is the distance from that example to the test example. These examples should
be output in sorted order by distance. You may assume:

• the test example is available as a variable (lets call it test) in both the map and reduce
functions. We’ll see in class how we can do this.

• access to a function readExample that takes an example line and gives back an Example.

• access to a function getDistance that gives the distance between two examples.

Hint: Between the map calls and reduce calls is the “sort and shuffle” phase where the
key/value pairs from the map phase are aggregated. As part of this process, all of the data
is sorted by the keys (output from the map phase). They are then passed to the reduce calls
in this order and output in this order as well.

3. Naive Bayes (almost)

Given a file containing labeled text examples where the the line consists of the label followed
by the example text associated (e.g. like the wine data) output the number of times a given
feature (i.e. word) occurs in an example with a particular label, that is, the numerator for
all features and labels in:

p(xi|y) =
count(xi, y)

count(y)

Notice, that we are counting the number of examples with a particular label that contain a
particular feature (i.e. word) and NOT the number of times that a word occurs in text of
a particular label, that is, if a word occurs multiple times in an example, it still only gets
counted once.

You may choose any reasonable output key (be specific) that would allow someone reading
the file to be able to figure out both the feature (word) and label. The value should be the
number of times that feature/label combination occurred.

4. Naive Bayes (even closer)

Given a file containing labeled text examples where the the line consists of the label followed
by the example text associated (e.g. like the wine data) output the number of times each
label occurs in the dataset, that is, the denominator in:
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p(xi|y) =
count(xi, y)

count(y)

Note that with this MapReduce program and the previous, we would have all of the data that
we’d need to actually calculate p(xi|y)!

5. Feature normalization

Given a file containing a list of examples of the form:

<label> <feature1> <feature2> <feature3> ... <featurem>

we want to generate a version of this file where the feature values have been mean centered.
The output examples should include the label and should also appear in the same order as
the original file.

You may assume:

• that each example has all of the features defined

• if (hint! ) you use multiple map/reduce phases, you may assume that future phases have
access (as, say, instance variables) to data produced in previous stages

When You’re Done

Submit your answers to the above questions in a single file to Gradescope.

4



http://knowledgehubnetworks.com/information-technology/big-data-ace-comic/
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