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GRADIENT DESCENT

David Kauchak
CS 158 – Spring 2022
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Admin

Assignment 3 graded

Assignment 5 out
¤ Course feedback

Midterm next week

Assignment 6 will also be next week
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Midterm details

Time limited take home exam (you’ll have 2 hours to complete it)

Available on Monday (2/21)

Must finish by end of the day on Friday (2/25)

You may use your notes, the class notes, the class book(s), and 
your assignments

You may NOT use any other resources on the web or search for 
things on the web
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Midterm topics

(More details on Wednesday!)
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Midterm topics

Machine learning basics
- different types of learning problems
- feature-based machine learning
- data assumptions/data generating distribution

Classification problem setup

Proper experimentation
- train/dev/test
- evaluation/accuracy/training error
- optimizing hyperparameters

5

Midterm topics

Learning algorithms
- Decision trees
- K-NN
- Perceptron
- Gradient descent

Algorithm properties
- training/learning
- rational/why it works

- classifying
- hyperparameters
- avoiding overfitting
- algorithm variants/improvements

6

Midterm topics

Geometric view of data
- distances between examples
- decision boundaries

Features
- example features
- removing erroneous features/picking good features
- challenges with high-dimensional data
- feature normalization

Other pre-processing
- outlier detection
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Midterm topics

Comparing algorithms
- n-fold cross validation

- leave one out validation
- bootstrap resampling
- t-test

imbalanced data
- evaluation

- precision/recall, F1, AUC
- subsampling
- oversampling
- weighted binary classifiers

8
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Midterm topics

Multiclass classification
- Modifying existing approaches
- Using binary classifier

- OVA
- AVA
- Tree-based

- micro- vs. macro-averaging

Ranking
- using binary classifier
- using weighted binary classifier

9

Midterm topics

Gradient descent
- 0/1 loss
- Surrogate loss functions
- Convexity
- minimization algorithm
- regularization

- different regularizers
- p-norms

Misc
- good coding habits
- JavaDoc

10

Midterm general advice

2 hours goes by fast!
- Don’t plan on looking everything up
- Lookup equations, algorithms, random details

- Make sure you understand the key concepts
- Don’t spend too much time on any one question
- Skip questions you’re stuck on and come back to them

- Watch the time as you go

Be careful on the T/F questions

For written questions
- think before you write
- make your argument/analysis clear and concise
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An aside: text classification

Raw data labels

Chardonnay

Pinot Grigio

Zinfandel
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Text: raw data

Raw data Features?labels

Chardonnay

Pinot Grigio

Zinfandel
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Feature examples

Raw data Features

(1, 1, 1, 0, 0, 1, 0, 0, …)
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Clinton said pinot repeatedly 
last week on tv, “pinot, pinot, 
pinot”

Occurrence of words

labels

Chardonnay

Pinot Grigio

Zinfandel
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Feature examples

Raw data Features

(4, 1, 1, 0, 0, 1, 0, 0, …)
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Clinton said pinot repeatedly 
last week on tv, “pinot, pinot, 
pinot”

Frequency of word occurrences

labels

Chardonnay

Pinot Grigio

Zinfandel

This is the representation we’re using for assignment 5

15

Decision trees for text

Each internal node represents whether or not the text has a particular word

wheat

buschl

Not wheat

export

Not wheat Wheat

farm

commodity

agriculture

Not wheat Wheat

Wheat

Wheat

16



2/15/22

5

Decision trees for text

wheat is a commodity that can be found in states across the nation

wheat

buschl

Not wheat

export

Not wheat Wheat

farm

commodity

agriculture

Not wheat Wheat

Wheat

Wheat
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Decision trees for text

The US views technology as a commodity that it can export by the buschl.

wheat

buschl

Not wheat

export

Not wheat Wheat

farm

commodity

agriculture

Not wheat Wheat

Wheat

Wheat
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Printing out decision trees

wheat

buschl

Not wheat

export

Not wheat Wheat

farm

commodity

agriculture

Not wheat Wheat

Wheat

Wheat

(wheat

(buschl

predict=not wheat

(export

predict=not wheat

predict=wheat))

(farm

(commodity

(agriculture

predict=not wheat

predict=wheat)

predict=wheat)

predict=wheat))
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Some math today (but don’t worry!)

20



2/15/22

6

Linear models

A high-bias assumption is linear separability:
¤ in 2 dimensions, can separate classes by a line

¤ in higher dimensions, need hyperplanes

A linear model is a model that assumes the data is linearly 
separable

21

Linear models

A linear model in n-dimensional space (i.e. n features) 
is define by n+1 weights:

In two dimensions, a line:

In three dimensions, a plane:

In m-dimensions, a hyperplane

0 = w1 f1 +w2 f2 + b (where b = -a)

0 = w1 f1 +w2 f2 +w3 f3 + b

0 = b+ wj f jj=1

m
∑

22

Perceptron learning algorithm

repeat until convergence (or for some # of iterations):
for each training example (f1, f2, …, fm, label):

if prediction * label ≤ 0:  // they don’t agree

for each wj:

wj = wj + fj*label

b = b + label

prediction = b+ wj f jj=1

m
∑

23

Which line will it find?

24
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Which line will it find?

Only guaranteed to find some
line that separates the data

25

Linear models

Perceptron algorithm is one example of a linear 
classifier

Many, many other algorithms learn a line (i.e. a setting 
of a linear combination of weights)

Goals:

- Explore a number of linear training algorithms
- Understand why these algorithms work

26

Perceptron learning algorithm

repeat until convergence (or for some # of iterations):
for each training example (f1, f2, …, fm, label):

if prediction * label ≤ 0:  // they don’t agree

for each wi:

wi = wi + fi*label

b = b + label

prediction = b+ wj f jj=1

m
∑

27

A closer look at why we got it wrong

0*−1+1*−1= −1

0* f1 +1* f2 =

w1 w2

We’d like this value to be positive 
since it’s a positive value

(-1, -1, positive)

didn’t contribute, 
but could have

contributed in the 
wrong direction

decrease decrease

0 -> -1 1 -> 0

Intuitively these make sense
Why change by 1?
Any other way of doing it?

28
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Model-based machine learning

1. pick a model
- e.g. a hyperplane, a decision tree,…
- A model is defined by a collection of parameters

What are the parameters for DT?  Perceptron?

29

Model-based machine learning

1. pick a model
- e.g. a hyperplane, a decision tree,…
- A model is defined by a collection of parameters

DT: the structure of the tree, which features each node 
splits on, the predictions at the leaves

perceptron: the weights and the b value

30

Model-based machine learning

1. pick a model
- e.g. a hyperplane, a decision tree,…
- A model is defined by a collection of parameters

2. pick a criterion to optimize (aka objective function)

What criteria do decision tree learning and 
perceptron learning optimizing? 

31

Model-based machine learning

1. pick a model
- e.g. a hyperplane, a decision tree,…
- A model is defined by a collection of parameters

2. pick a criterion to optimize (aka objective function)
- e.g. training error

3. develop a learning algorithm
- the algorithm should try and minimize the criteria
- sometimes in a heuristic way (i.e. non-optimally)
- sometimes exactly

32
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Linear models in general

1. pick a model

2. pick a criterion to optimize (aka objective function)

These are the parameters we want to learn

0 = b+ wj f jj=1

m
∑

33

Some notation: indicator function

1 x[ ] =
1 if  x = True
0 if  x = False

!
"
#

$#

%
&
#

'#

Convenient notation for turning T/F answers into numbers/counts:

beers_ to_bring_ for _ class = 1 age >= 21[ ]
age∈class
∑

34

Some notation: dot-product

Sometimes it is convenient to use vector notation

We represent an example f1, f2, …, fm as a single vector, x
¤ j subscript will indicate feature indexing, i.e., xj
¤ i subscript will indicate examples indexing over a dataset, i.e., xi or sometimes xij

Similarly, we can represent the weight vector w1, w2, …, wm as a single vector, 
w

The dot-product between two vectors a and b is defined as:

a ⋅b = ajbj
j=1

m

∑

35

Linear models

1. pick a model

2. pick a criterion to optimize (aka objective function)

These are the parameters we want to learn

1 yi (w ⋅ xi + b) ≤ 0[ ]
i=1

n

∑

What does this equation say?

0 = b+ wj f jj=1

n
∑

36
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0/1 loss function

1 yi (w ⋅ xi + b) ≤ 0[ ]
i=1

n

∑

- distance from hyperplane
- sign is predictionwhether or not the 

prediction and label agree,
true if they don’t

total number of mistakes, 
aka 0/1 loss

37

Model-based machine learning

1. pick a model

2. pick a criteria to optimize (aka objective function)

3. develop a learning algorithm

1 yi (w ⋅ xi + b) ≤ 0[ ]
i=1

n

∑

argminw,b 1 yi (w ⋅ xi + b) ≤ 0[ ]
i=1

n

∑ Find w and b that 
minimize the 0/1 loss 
(i.e. training error)

0 = b+ wj f jj=1

m
∑

38

Minimizing 0/1 loss

argminw,b 1 yi (w ⋅ xi + b) ≤ 0[ ]
i=1

n

∑

How do we do this?
How do we minimize a function?
Why is it hard for this function?

Find w and b that 
minimize the 0/1 loss

39

Minimizing 0/1 in one dimension

loss

1 yi (w ⋅ xi + b) ≤ 0[ ]
i=1

n

∑

Each time we change w such that the example is 
right/wrong the loss will increase/decrease

w

40
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Minimizing 0/1 over all w

loss

Each new feature we add (i.e. weights) adds 
another dimension to this space!

w

1 yi (w ⋅ xi + b) ≤ 0[ ]
i=1

n

∑

41

Minimizing 0/1 loss

argminw,b 1 yi (w ⋅ xi + b) ≤ 0[ ]
i=1

n

∑

This turns out to be hard (in fact, NP-HARD L)

Find w and b that 
minimize the 0/1 loss

Challenge: 
- small changes in any w can have large changes in 

the loss (the change isn’t continuous)
- there can be many, many local minima
- at any given point, we don’t have much information 

to direct us towards any minima

42

More manageable loss functions

loss

w

What property/properties do we want from our loss function?

43

More manageable loss functions

- Ideally, continuous (i.e. differentiable) so we get an 
indication of direction of minimization

- Only one minima

w

loss

44
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Convex functions

Convex functions look something like:

One definition: The line segment between any 
two points on the function is above the function

45

Surrogate loss functions

For many applications, we really would like to minimize 
the 0/1 loss

A surrogate loss function is a loss function that provides an 
upper bound on the actual loss function (in this case, 0/1)

We’d like to identify a convex surrogate loss functions to 
make them easier to minimize

Key to a loss function: how it scores the difference 
between the actual label y and the predicted label y’

46

Surrogate loss functions

Ideas?
Some function that is a proxy for 
error, but is continuous and convex

l(y, y ') =1 yy ' ≤ 0[ ]0/1 loss:

47

Surrogate loss functions

l(y, y ') =1 yy ' ≤ 0[ ]0/1 loss:

Hinge: l(y, y ') =max(0,1− yy ')

Exponential: l(y, y ') = exp(−yy ')

Squared loss: l(y, y ') = (y− y ')2

Why do these work?  What do they penalize?

48
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Surrogate loss functions

l(y, y ') =1 yy ' ≤ 0[ ]0/1 loss:

Squared loss: l(y, y ') = (y− y ')2
Hinge: l(y, y ') =max(0,1− yy ')

Exponential: l(y, y ') = exp(−yy ')

yy’ or
y-y’

49

Model-based machine learning

1. pick a model

2. pick a criteria to optimize (aka objective function)

3. develop a learning algorithm

exp(−yi (w ⋅ xi + b))
i=1

n

∑

argminw,b exp(−yi (w ⋅ xi + b))
i=1

n

∑ Find w and b that 
minimize the 
surrogate loss

use a convex surrogate 
loss function

0 = b+ wj f jj=1

m
∑

50

Finding the minimum

You’re blindfolded, but you can see out of the bottom of the 
blindfold to the ground right by your feet.  I drop you off 
somewhere and tell you that you’re in a convex shaped valley 
and escape is at the bottom/minimum.  How do you get out?

51

Finding the minimum

How do we do this for a function?

w

loss

52
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One approach: gradient descent

Partial derivatives give us the 
slope (i.e. direction to move) in 
that dimension

w

loss

53

One approach: gradient descent

Partial derivatives give us the 
slope (i.e. direction to move) in 
that dimension

Approach:
¤ pick a starting point (w)
¤ repeat:

n pick a dimension
n move a small amount in that 

dimension towards decreasing loss 
(using the derivative)

w

loss

54

One approach: gradient descent

Partial derivatives give us the 
slope (i.e. direction to move) in 
that dimension

Approach:
¤ pick a starting point (w)
¤ repeat:

n pick a dimension
n move a small amount in that 

dimension towards decreasing loss 
(using the derivative)

55

Gradient descent

¤ pick a starting point (w)
¤ repeat until loss doesn’t decrease in any dimension:

n pick a dimension
n move a small amount in that dimension towards decreasing loss (using 

the derivative)

𝑤𝑗 = 𝑤𝑗 −
𝑑
𝑑𝑤𝑗

𝑙𝑜𝑠𝑠(𝑤)

Why negative?

56
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Gradient descent

¤ pick a starting point (w)
¤ repeat until loss doesn’t decrease in any dimension:

n pick a dimension
n move a small amount in that dimension towards decreasing loss (using 

the derivative)

What does this do?

𝑤𝑗 = 𝑤𝑗 − 𝜂
𝑑
𝑑𝑤𝑗

𝑙𝑜𝑠𝑠(𝑤)

57

Gradient descent

¤ pick a starting point (w)
¤ repeat until loss doesn’t decrease in any dimension:

n pick a dimension
n move a small amount in that dimension towards decreasing loss (using 

the derivative)

learning rate (how much we want to move in the error 
direction, often this will change over time)

𝑤𝑗 = 𝑤𝑗 − 𝜂
𝑑
𝑑𝑤𝑗

𝑙𝑜𝑠𝑠(𝑤)

58

Some math

=
d
dwj

exp(−yi (w ⋅ xi + b))
i=1

n

∑d
dwj

loss

= exp(−yi (w ⋅ xi + b))
d
dwji=1

n

∑ − yi (w ⋅ xi + b)

59

Some math

-
!
!"!

yi(w!xi + b) = -
!
!"!

yi(∑#$%& 𝑤𝑗𝑥𝑖𝑗 + b)

= - !
!"!

yi(𝑤1𝑥𝑖1+ 𝑤2𝑥𝑖2 + … + 𝑤𝑚𝑥𝑖𝑚 + b)

= - &
&'!

yi𝑤1𝑥𝑖1+ yi𝑤2𝑥𝑖2 + … +yi𝑤𝑚𝑥𝑖𝑚 + yib)

= -yi𝑥𝑖𝑗

60
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Some math

=
d
dwj

exp(−yi (w ⋅ xi + b))
i=1

n

∑d
dwj

loss

= exp(−yi (w ⋅ xi + b))
d
dwji=1

n

∑ − yi (w ⋅ xi + b)

= −yixij exp(−yi (w ⋅ xi + b))
i=1

n

∑

61

Gradient descent

¤ pick a starting point (w)
¤ repeat until loss doesn’t decrease in any dimension:

n pick a dimension
n move a small amount in that dimension towards decreasing loss (using 

the derivative)

wj = wj +η yixij exp(−yi (w ⋅ xi + b))
i=1

n

∑

What is this doing?

62

Exponential update rule

wj = wj +η yixij exp(−yi (w ⋅ xi + b))
i=1

n

∑

wj = wj +ηyixij exp(−yi (w ⋅ xi + b))

for each example xi:

Does this look familiar?

63

Perceptron learning algorithm!

repeat until convergence (or for some # of iterations):

for each training example (f1, f2, …, fm, label):

if prediction * label ≤ 0:  // they don’t agree

for each wj:
wj = wj + fj*label

b = b + label

prediction = b+ wj f jj=1

m
∑

wj = wj +ηyixij exp(−yi (w ⋅ xi + b))

wj = wj + xij yic
or

where c =η exp(−yi (w ⋅ xi + b))

64
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The constant

c =η exp(−yi (w ⋅ xi + b))

When is this large/small?

predictionlabellearning rate

65

The constant

c =η exp(−yi (w ⋅ xi + b))

predictionlabel

If they’re the same sign, as the 
predicted gets larger the update 
gets smaller

If they’re different, the more 
different they are, the bigger the 
update

66

Perceptron learning algorithm!

repeat until convergence (or for some # of iterations):

for each training example (f1, f2, …, fm, label):

if prediction * label ≤ 0:  // they don’t agree

for each wj:
wj = wj + fj*label

b = b + label

prediction = b+ wj f jj=1

m
∑

wj = wj +ηyixij exp(−yi (w ⋅ xi + b))

wj = wj + xij yic
or

where c =η exp(−yi (w ⋅ xi + b))

Note: for gradient descent, we always update

67

One concern

w

loss

argminw,b exp(−yi (w ⋅ xi + b))
i=1

n

∑

We’re calculating this on the training set

We still need to be careful about 
overfitting!

The min w,b on the training set is 
generally NOT the min for the test set

How did we deal with this for the perceptron algorithm?
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Summary

Model-based machine learning:
- define a model, objective function (i.e. loss function), 

minimization algorithm

Gradient descent minimization algorithm
- require that our loss function is convex
- make small updates towards lower losses

Perceptron learning algorithm:
- gradient descent
- exponential loss function (modulo a learning rate)
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