

Assignment 2 experiments

How good was the decision tree?

How deep did it need to be?

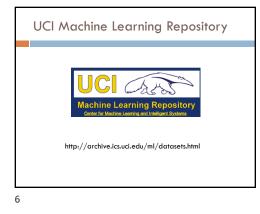
Overfitting?

3

Training data size?

Calculating averages

Terrain	Unicycle- type		Go-For-Ride?
Trail	Normal	Rainy	NO
Road	Normal	Sunny	YES
Trail	Mountain	Sunny	YES
Road	Mountain	Rainy	YES
Trail	Normal	Snowy	NO
Road	Normal	Rainy	YES
Road	Mountain	Snowy	YES
Trail	Normal	Sunny	NO
Road	Normal	Snowy	NO
Trail	Mountain	Snowy	YES



Provided features

Predicting the age of abalone from physical measurements

Name / Data Type / Measurement Unit / Description

Sex / nominal / -- / A, F; and I (Infant) Length / continuous / mm / Longest shell measurement Diameter / continuous / mm / with meat in shell Whole weight / continuous / grams / weight of meat Viscero weight / continuous / grams / weight (nefter bleeding) Viscero weight / continuous / grams / weight (nefter bleeding) Shell weight / continuous / grams / drifer being dried Rings / integor / -- / -1.5 gives the age in years

8

Provided features

Predicting breast cancer recurrence

```
1. Closs: no-recurrence-events, recurrence-events

2. cge: 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90-99.

3. memopouse: 140, ge40, premeno.

4. trunor-size: 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54,

55-59.

5. inv-nodes: 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29, 30-32, 33-

35, 36-39.

6. node-cops: yes, no.

7. deg-melig: 1, 2, 3.

8. broest: left, right.

9. broest-quoti left-up, left-low, right-up, right-low, central.

10. irradiated: yes, no.
```

Provided features

In many physical domains (e.g. biology, medicine, chemistry, engineering, etc.)

the data has been collected and the relevant features have been identified

we cannot collect more features from the examples (at least "core" features)

In these domains, we can often just use the provided features

9

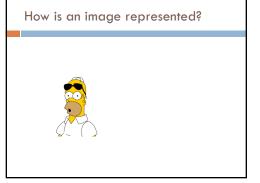
Raw data vs. features

In other domains, we are provided with the raw data, but must extract/identify features

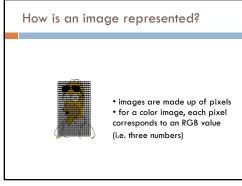
For example
image data
text data
audio data
log data

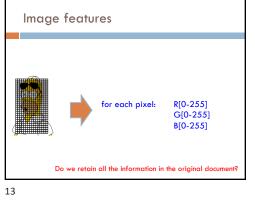
••••

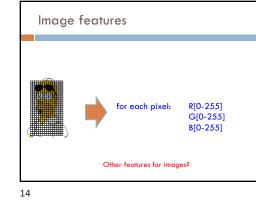
10

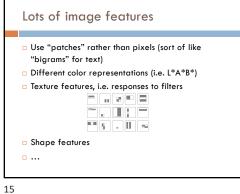


11







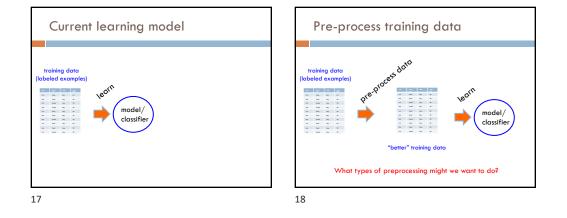


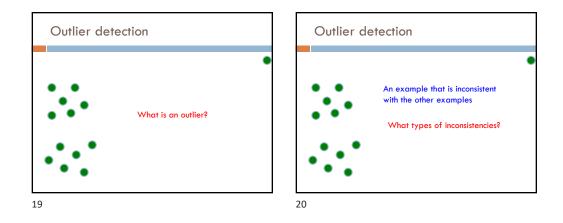
Obtaining features

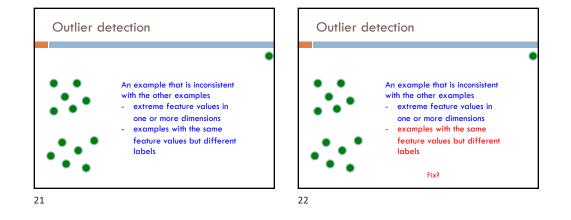
Very often requires some domain knowledge

As ML algorithm developers, we often have to trust the "experts" to identify and extract reasonable features

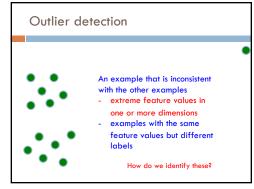
That said, it can be helpful to understand where the features are coming from







- Identify examples that have the same features, but differing values
- For some learning algorithms, these examples can cause issues (for example, not converging)
- $\hfill\square$ In general, unsatisfying from a learning perspective
- Can be a bit expensive computationally (examining all pairs), though faster approaches are available



Removing extreme outliers

Throw out examples that have extreme values in one dimension

Throw out examples that are very far away from any other example

Train a probabilistic model on the data and throw out "very unlikely" examples

This is an entire field of study by itself! Often called outlier or anomaly detection.

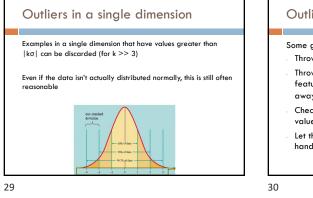
25

Quick statistics recap

26

What are the mean, standard deviation, and variance of data?

Quick statistics recap Outlier detection mean: average value, often written as $\boldsymbol{\mu}$ variance: a measure of how much variation there is in the data. Calculated as: $\sigma^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \mu)^{2}}{n - 1}$ standard deviation: square root of the variance (written as σ) If we know the data is distributed normally (i.e. via a normal/gaussian distribution) How can these help us with outliers? 28



Outliers for machine learning

Some good practices:

- Throw out conflicting examples
- Throw out any examples with obviously extreme feature values (i.e. many, many standard deviations away)
- Check for erroneous feature values (e.g. negative values for a feature that can only be positive)
- Let the learning algorithm/other pre-processing handle the rest

So far...

- 1. Throw out outlier examples
- 2. Which features to use

Feature pruning/selection

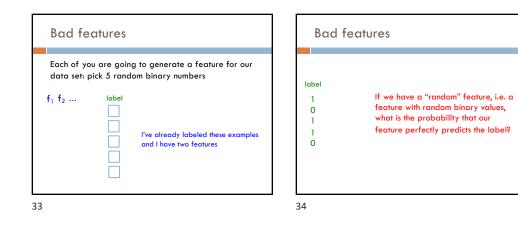
Good features provide us with information that helps us distinguish between labels. However, not all features are good

Feature pruning is the process of removing "bad" features

Feature selection is the process of selecting "good" features

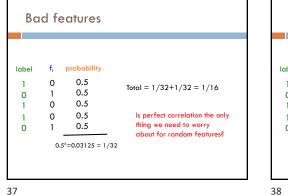
What makes a bad feature and why would we have them in our data?

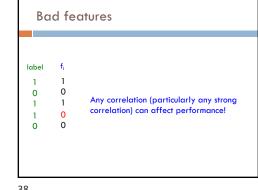
31



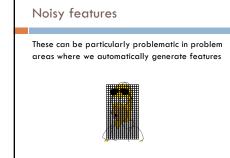
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
--

	Ba	d fe	eatures	
la	bel	f	probability	
	1	0	0.5 0.5	Total = 1/32+1/32 = 1/16
	1	0	0.5	
	1	0	0.5 0.5	Why is this a problem?
	0	0.		Although these features perfectly correlate/predict the training data, they will generally NOT have any predictive power on the test set!





	sy featu	Jres			
	features car ining if a fea				nt always
Terrain	Unicycle-type	Weather	Jacket	ML grade	Go-For-Ride?
Trail	Mountain	Rainy	Heavy	D	YES
Trail	Mountain	Sunny	Light	c.	YES
Road	Mountain	Snowy	Light	в	YES
		Sunny	Hegyy	A	YES
	Mountain				
Road	Normal	Snowy	Light	D+	NO
Road Trail			Light Heavy	D+ 8-	NO
koad Road Frail Frail Road	Normal	Snowy			
Road Trail	Normal	Snowy Rainy	Heavy	в.	NO
Road Frail Frail Road	Normal Normal Normal	Snowy Rainy Snowy	Heavy Heavy	8. C+	NO YES
Road Frail Road Road	Normal Normal Normal Normal	Snowy Rainy Snowy Sunny	Heavy Heavy Light	в. С+ А-	NO YES NO



Noi	sy featu	Jres				Removing noisy features
	Ideas for r	emoving n	oisy/rando	m features?		The expensive way: - Split training data into train/dev - Train a model on all features
Terroin	Unicycle-type	Weather	Jacket	ML grode	Go-For-Ride?	for each feature f:
oil	Mountain	Rainy	Heavy	D	YES	Train a model on all features <i>minus</i> f
ail .	Mountain	Sunny	Light	с.	YES	
od	Mountain	Snowy	Light	в	YES	 Compare performance of all vs. all-f on dev set
ad	Mountain	Sunny	Heavy	A	YES	
1	Normal	Snowy	Light	D+	ND	
rail	Normal	Rainy	Heavy	в-	NO	 Remove all features where decrease in performa
bod	Normal	Snowy	Heavy	C+	YES	between all and all-f is less than some constant
od	Normal	Sunny	Light	A-	NO	between all and all-1 is less than some constant
2	Normal	Sunny	Heavy	B+	ND	
a	Normal	Snowy	Light	F	ND	Feature ablation study Issues/concerns?
irail	Normal	Rainy	Light	с	YES	realitie ablantion study issues/concernse

Removing noisy features

Binary features:

remove "rare" features, i.e. features that only occur (or don't occur) a very small number of times

Real-valued features: remove features that have low variance

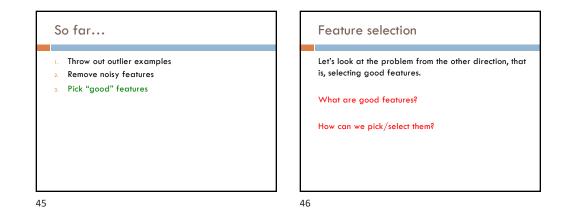
In both cases, can either use thresholds, throw away lowest x%, use development data, etc.

Why?

Some rules of thumb for the number of features

Be very careful in domains where: ■ the number of features > number of examples ■ the number of features ≈ number of examples ■ the features are generated automatically ■ there is a chance of "random" features

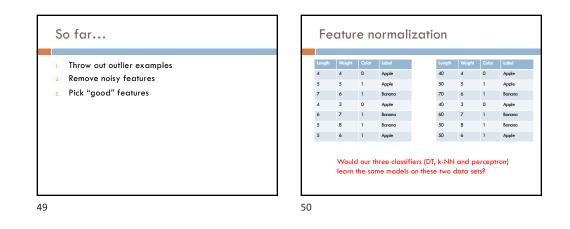
In most of these cases, features should be removed based on some domain knowledge (i.e. problemspecific knowledge)



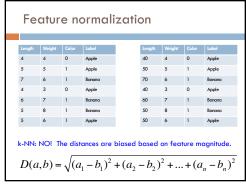
Goo	d fe	ea	tur	es	
-	d feat	ture	сог	relate	s well with the label
Ιαbel 1 0 1 1 0	1 0 1 1 0	-	1		How can we identify this? - training error (like for DT) - correlation model - statistical test - probabilistic test

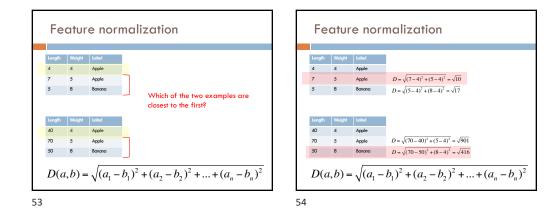
Training error feature selection

- for each feature f:
 calculate the training error if only feature f were used to pick the label
- rank each feature by this value
- pick top k, top x%, etc.
- can use a development set to help pick k or x

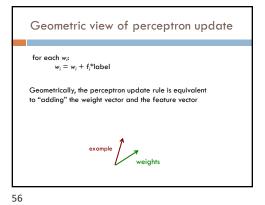


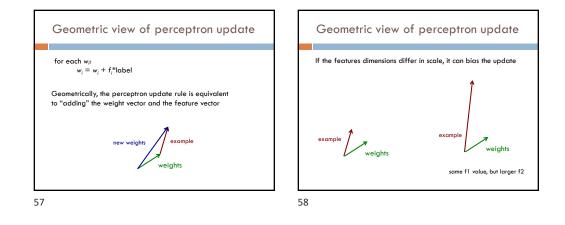
Length	Weight	Color	Label	Length	Weight	Color	Label
4	4	0	Apple	40	4	0	Apple
5	5	1	Apple	50	5	1	Apple
7	6	1	Banana	70	6	1	Banana
4	3	0	Apple	40	3	0	Apple
6	7	1	Banana	60	7	1	Banana
5	8	1	Banana	50	8	1	Banana
5	6	1	Apple	50	6	1	Apple
			sion trees o 'd learn the		ut scale	e, so	

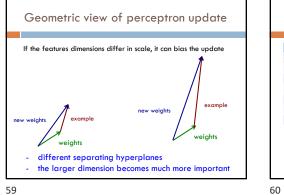


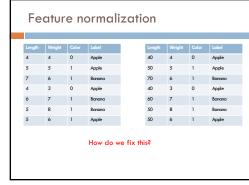


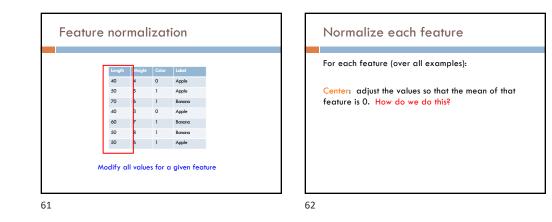
Length	Weight	Color	Label	- E	Length	Weight	Color	Label
4	4	0	Apple		40	4	0	Apple
5	5	1	Apple	2	50	5	1	Apple
7	6	1	Banana	5	70	6	1	Banana
4	3	0	Apple		40	3	0	Apple
6	7	1	Banana		60	7	1	Banana
5	8	1	Banana	2	50	8	1	Banana
5	6	1	Apple	2	50	6	1	Apple
Ťh		ificatio)! ^w i on and weig ne feature			based	on the	÷











Normalize each feature

For each feature (over all examples):

Center: adjust the values so that the mean of that feature is 0: subtract the mean from all values

Rescale/adjust feature values to avoid magnitude bias. Ideas?

Normalize each feature For each feature (over all examples): Center: adjust the values so that the mean of that feature is 0: subtract the mean from all values Rescale/adjust feature values to avoid magnitude bias: Variance scaling: divide each value by the std dev Absolute scaling: divide each value by the largest value Pros/cons of either scaling technique?

63

