

1

2

3

Linear models

A strong high-bias assumption is linear separability:
\square in 2 dimensions, can separate classes by a line
\square in higher dimensions, need hyperplanes
A linear model is a model that assumes the data is linearly
separable

4
Hyperplanes
A hyperplane is a line/plane in a high-dimensional space
What defines a line?
What defines a hyperplane?

| Defining a line |
| :--- | :--- |
| Any pair of values $\left(w_{1}, w_{2}\right)$ defines a line through the origin: |
| $0=w_{1} f_{1}+w_{2} f_{2}$ |

Defining a line	
Any pair of values $\left(w_{1}, w_{2}\right)$ defines a line through the origin:$0=w_{1}$	

Defining a line
Any pair of values $\left(w_{1}, w_{2}\right)$ defines a line through the origin: $0=w_{1} f_{1}+w_{2} f_{2}$ We can also view it as the line perpendicular to the weight vector
w=(1,2)

9

11

10

Defining a line

Any pair of values (w_{1}, w_{2}) defines a line through the origin:
$0=w_{1} f_{1}+w_{2} f_{2}$

$$
0=1 f_{1}+2 f_{2}
$$

12

13

15

Classifying with a linear model
We can classify with a linear model by checking the sign:
$f_{1}, f_{2}, \ldots, f_{n}$
classifier $b+\sum_{i-1}^{n} w_{i} f_{i}>0$ Positive example

16

19

33

34

35

36

A closer look at why we got it wrong
Which of the weights contributed to the mistake?

A closer look at why we got it wrong	
How should we change the weights?	

A closer look at why we got it wrong	
$\mathrm{w}_{1} \quad \mathrm{w}_{2}$$1 * f_{1}+0 * f_{2}=$$1 *-1+0 * 1=-1$$\quad$We'd like this value to be positive since it's a positive value	

39

40

41

43

44

45

47

49

50

51

52

53

Perceptron learning algorithm
repeat until convergence (or for some \# of iterations):
for each training example ($f_{1}, f_{2}, \ldots, f_{n \prime}$ label):
prediction $=b+\sum_{i-1}^{n} w_{i} f_{i}$
if prediction * label $\leq 0: / /$ they don't agree
for each w_{i}
$w_{i}=w_{i}+f_{i}$ *label
$b=b+$ label

Perceptron learning algorithm

repeat until convergence (or for some \# of iterations):
for each training example ($f_{1}, f_{2}, \ldots, f_{n \prime}$, label):
prediction $=b+\sum_{i-1}^{n} w_{i} f_{i}$
if prediction * label $\leq 0: / /$ they don't agree
for each w_{i} :
$w_{i}=w_{i}+f_{i}^{*}$ label
$b=b+$ label

Would this work for non-binary features, i.e. real-valued?

55

57

60

69

Convergence
repeat until convergence (or for some \# of iterations):
for each training example ($f_{1}, f_{2}, \ldots, f_{n}$, label):
prediction $=b+\sum_{i-1}^{n} w_{i} f_{i}$
if prediction * label ≤ 0 : // they don't agree
for each w_{i}
$w_{i}=w_{i}+f_{i}^{*}$ label
$b=b+$ label
Also helps avoid overfitting!
(This is harder to see in 2-D examples, though)

70

71

94

95

96
wis the strength of signal sent between A and B.
If A fires and w is positive, then A stimulates B.
If A fires and w is negative, then A inhibits B.
If a node is stimulated enough, then it also fires.
How much stimulation is required is determined by its threshold.

97

100

