

The "bias" of a model is how strong the model assumptions are.

low-bias classifiers make minimal assumptions about the data (k-NN and DT are generally considered low bias)

high-bias classifiers make strong assumptions about the data


```
repeat until convergence (or for some # of iterations):
for each training example (f_1, f_2, ..., f_m label):
prediction = b + \sum_{i=1}^{n} w_i f_i
```

```
if prediction * label \leq 0: // they don't agree
for each w;:
w_i = w_i + f_i^* |abel
b = b + |abel
```

```
Perceptron learning algorithm

repeat until convergence (or for some # of iterations):

for each training example (f_1, f_2, ..., f_{nr} label):

prediction = b + \sum_{i=1}^{n} w_i f_i

if prediction * label \leq 0: // they don't agree

for each w:

w_i = w_i + f_i^{e_i}label

b = b +  label

Would this work for non-binary features, i.e. real-valued?
```


Voted perceptron learning

Training

every time a mistake is made on an example:
 store the model weights (i.e. before changing for current example)
 store the number of examples that set of weights got correct

Classify

- calculate the prediction from ALL saved weights
- multiply each prediction by the number it got correct (i.e., a weighted vote) and take the sum over all predictions
- said another way: pick whichever prediction has the most votes

Prediction

NEGATIVE

POSITIVE

NEGATIVE

POSITIVE

8: negative 2: positive

NEGATIVE

Classify

Voted perceptron learning

Works much better in practice

Avoids overfitting, though it can still happen

Avoids big changes in the result by examples examined at the end of training

Voted perceptron learning

Training

- every time a mistake is made on an example:
 - store the weights (i.e. before changing for current example)
 store the number of examples that set of weights got correct

Classify

- calculate the prediction from ALL saved weights
 multiply each prediction by the number it got correct (i.e a weighted vote) and take the sum over all predictions
- said another way: pick whichever prediction has the most votes

Any issues/concerns?

90

92


```
repeat until convergence (or for some # of iterations):
for each training example (f_1, f_2, ..., f_n label):
prediction = b + \sum_{i=1}^{n} w_i f_i
if prediction * label \leq 0: // they don't agree
for each w;:
```

 $w_i = w_i + f_i^*$ label b = b +label

Why is it called the "perceptron" learning algorithm if what it learns is a line? Why not "line learning" algorithm?

94

A Single Neuron/Perceptron $\begin{array}{c}
 1 \\
 0 \\
 -1 \\
 0 \\
 -1 \\
 0 \\
 1 \\
 Threshold of 1
 1
 b + \sum_{l=1}^{n} w_l f_l > 0 \\
 where b = -\alpha
 1$