

Administrative

Final projects

Next class: skim the papers

No mentor hours this week

2

K-means

Start with some initial cluster centers

lterate:

Assign/cluster each example to closest center

Recalculate centers as the mean of the points in a cluster

Problems with K-means

Determining K is challenging

Hard clustering isn't always right

Assumes clusters are spherical

Greedy approach

	EM clustering
	Very similar at a high-level to K-means
	Iterate between assigning points and recalculating cluster centers
	Two main differences between K-means and EM clustering: 1. We assume elliptical clusters (instead of spherical)
	2. It is a "soft" clustering algorithm
2	

Fitting a Gaussian

What is the "best"-fit Gaussian for this data?

10, 10, 10, 9, 9, 8, 11, 7, 6, ...

The MLE is just the mean and variance of the data!

Recall this is the 1-D Gaussian equation:

$$f(x;\sigma,\theta) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

E and M steps

Expectation: Given the current model, figure out the expected probabilities of the data points to each cluster

 $\mbox{Maximization:}$ Given the probabilistic assignment of all the points, estimate a new model, θ_c

Iterate:

each iterations increases the likelihood of the data and is guaranteed to converge (though to a local optimum)!

33

ΕM

EM is a general purpose approach for training a model when you don't have labels

Not just for clustering! K-means is just for clustering

One of the most general purpose unsupervised approaches

can be hard to get right!

34

EM is a general framework

Create an initial model, θ'

Arbitrarily, randomly, or with a small set of training examples

Use the model θ ' to obtain another model θ such that

 $\sum_i \log P_{\theta}(data_i) > \sum_i \log P_{\theta'}(data_i) \qquad \begin{array}{l} \text{i.e. better models data} \\ (\text{increased log likelihood}) \end{array}$

Let $\theta'=\theta$ and repeat the above step until reaching a local maximum

Guaranteed to find a better model after each iteration

Where else have you seen EM?

EM shows up all over the place Training HMMs (Baum-Welch algorithm) Learning probabilities for Bayesian networks EM-clustering

Learning word alignments for language translation

Learning Twitter friend network

Genetics

Finance

Anytime you have a model and unlabeled data!

Where we've been!

Our ML suite:

59

61

How many classes?

How many lines of code?

Where we've been!

Geometric view of data

Model analysis and interpretation (linear, etc.)

Evaluation and experimentation

Probability basics

Regularization (and priors)

Deep learning

Ensemble methods

Unsupervised learning (clustering)

62

Four of these are true

I lived in Vermont for three years

I won a disc golf tournament

l'm a dual citizen

I've been to Albania 5 times

I brew my own beer

63

Four of these are true

l cut my own hair

I wrote the prototype of Google Scholar

l mountain unicycle

I was born in Antarctica

I have over 100 bottles of alcohol at home

Midterm 2

Mean: 28.58 (87%)

Q3: 30.4 (92%) Median: 29 (88%) Q1: 27.75 (84%)

Good job!

64