

1

3

Admin

Assignment 7

Grading update

Friday mentor hours: 6-8pm

Course feedback

How is the difficulty of the class?
14 responses
${ }^{8}$

5

Improvements

Posting slides at the start of class.

I like to start the assignments as early as Monday night. I would love it if we had mentor sessions on Saturday as well. Or definitely both on Thursdays and Fridays the least, because Sunday is not enough if we are too far away from being done.

More mentor sessions :/ Not likely though. Maybe just three total would be awesome.

Releasing the assignments at the same time every week would help.

7

Favorite thing

I feel like my coding skills in general are improving significantly. I am practicing concise documentation/efficient coding.

I like the coding part of the class!
getting better at java

6

Improvements

Give the big picture - how everything we are leading connects? the life cycle of ML project maybe?

I wished we went deeper in the math side of things. I think implementing ML algorithms is fun and cool, so don't change that!

Improvements

Post the autograder score before we are done with the assignment. For several of these, we see our results, and they look good, but we don't know for sure if it's correct or not, so in a lot of cases we lose points on edge cases that we could've solved had we known they were problematic.

9

11

Other comments

We lost points on the first three assignments to JavaDocs for other stylistic reasons, but we hadn't gotten our scores for the first assignment until after we had turned in the third assignment, so we didn't know we were supposed to do the JavaDocs and got dinged three times for it.

10

13

15

14

16

17

19

18

20

21
$\left.\begin{array}{|l|l|}\hline \text { Basic steps for probabilistic modeling } \\ \text { Step 1: pick a model } & \begin{array}{l}\text { Probabilistic models } \\ \text { Step 2: figure out how to } \\ \text { estich model do we use, } \\ \text { i.e. how do we calculate } \\ \text { p(feature, label)? }\end{array} \\ \text { the model probabilities for }\end{array} \quad \begin{array}{l}\text { How do train the model, } \\ \text { i.e. how to we we } \\ \text { estimate the probabilities } \\ \text { for the model? }\end{array}\right]$

23

Priors

Coin1 data: 3 Heads and 1 Tail
Coin2 data: 30 Heads and 10 tails
Coin3 data: 2 Tails
Coin4 data: 497 Heads and 503 tails

If someone asked you what the probability of heads was for each of these coins, what would you say?

22

24

25

27

26

28

29

31

30

32

33

35

34

36

37

39

Priors

Coin1 data: 3 Heads and 1 Tail
Coin2 data: 30 Heads and 10 tails
Coin3 data: 2 Tails
Coin4 data: 497 Heads and 503 tails

$$
p(\text { heads })=\frac{\text { count }(\text { heads })+\lambda}{\text { totalflips }+2 \lambda}
$$

Does this do the right thing in these cases?

38

40

Avoids zero probability events!		
smoothed/prior	$p\left(x_{1}=1 \mid 1\right)$	3/3
	$\mathrm{p}\left(\mathrm{x}_{1}=0 \mid 1\right)$	0/3
	$p\left(x_{2}=1 \mid 1\right)$	2/3
	$\mathrm{p}(\mathrm{x} 2=0$ (1)	1/3
	$p\left(x_{1}=1 \mid 1\right)$	4/5
	$p\left(x_{1}=0 \mid 1\right)$	1/5
	$p\left(x_{2}=1 \mid 1\right)$	3/5
	$\mathrm{p}(\mathrm{x} 2=0$ (1)	2/5

41
Joint models vs conditional models
We've been trying to model the joint distribution (i.e. the data generating distribution):

$$
p\left(x_{1}, x_{2}, \ldots, x_{m}, y\right)
$$

However, if all we're interested in is classification, why not directly model the conditional distribution:

$$
p\left(y \mid x_{1}, x_{2}, \ldots, x_{m}\right)
$$

43

Basic steps for probabilistic modeling	
Step 1: pick a model	Probabilistic models Which model do we use, i.e. how do we calculate p(feature, label)?
Step 2: figure out how to estimate the probabilities for the model	How do train the model, i.e. how to we we estimate the probabilities for the model?
Step 3 (optional): deal with overfitting	How do we deal with overfitting?

42

A first try: linear
$p\left(y \mid x_{1}, x_{2}, \ldots, x_{m}\right)=x_{1} w_{1}+w_{2} x_{2}+\ldots+w_{m} x_{m}+b$

Any problems with this?

- Nothing constrains it to be a probability
- Could still have combination of features and
weight that exceeds 1 or is below 0

44

45

Odds ratio

47

Odds ratio

Rather than predict the probability, we can predict the ratio of $1 / 0$ (positive/negative)

Predict the odds that it is 1 (true): How much more likely is 1 than 0 .

Does this help us?
$\frac{P\left(1 \mid x_{1}, x_{2}, \ldots, x_{m}\right)}{P\left(0 \mid x_{1}, x_{2}, \ldots, x_{m}\right)}=\frac{P\left(1 \mid x_{1}, x_{2}, \ldots, x_{m}\right)}{1-P\left(1 \mid x_{1}, x_{2}, \ldots, x_{m}\right)}=x_{1} w_{1}+w_{2} x_{2}+\ldots+w_{m} x_{m}+b$

46

Odds ratio

We're trying to find some transformation that transforms the odds ratio to a number that is $-\infty$ to $+\infty$
Does this suggest another transformation?

48

49

51

52

Logistic regression

How would we classify examples once we had a trained model?

$$
\log \frac{P\left(1 \mid x_{1}, x_{2}, \ldots, x_{m}\right)}{1-P\left(1 \mid x_{1}, x_{2}, \ldots, x_{m}\right)}=w_{1} x_{2}+w_{2} x_{2}+\ldots+w_{m} x_{m}+b
$$

If the sum >0 then $p(1) / p(0)>1$, so positive
if the sum <0 then $p(1) / p(0)<1$, so negative

Still a linear classifier (decision boundary is a line)

MLE logistic regression

Find the parameters that maximize the likelihood (or log-likelihood) of the data:

$$
\begin{aligned}
\text { log-likelihood } & =\sum_{i=1}^{n} \log \left(p\left(x_{i}\right)\right) \\
& =\sum_{i=1}^{n} \log \left(\frac{1}{1+e^{-y_{i}\left(w_{i} x_{2}+w_{2} x_{2}+\ldots+w_{m} x_{m}+b\right)}}\right) \\
& =\sum_{i=1}^{n}-\log \left(1+e^{-y_{i}\left(w_{i} x_{2}+w_{2} x_{2}+\ldots+w_{m} x_{m}+b\right)}\right)
\end{aligned}
$$

Training logistic regression models

How should we learn the parameters for logistic regression (i.e. the w's and b)?
$\log \frac{P\left(1 \mid x_{1}, x_{2}, \ldots, x_{m}\right)}{1-P\left(1 \mid x_{1}, x_{2}, \ldots, x_{m}\right)}=w_{1} x_{2}+w_{2} x_{2}+\ldots+w_{m} x_{m}+b$

54

MLE logistic regression

\log-likelihood $=\sum_{i=1}^{n}-\log \left(1+e^{-y_{i}\left(w_{1} x_{2}+w_{2} x_{2}+\ldots+w_{m} x_{n}+t\right)}\right)$
We want to maximize, i.e.
$\operatorname{MLE}($ data $)=\operatorname{argmax}_{w, b} \log$ - likelihood $($ data $)$
$=\operatorname{argmax}_{w, b} \sum_{i=1}^{n}-\log \left(1+e^{-y_{i}\left(w_{1} x_{2}+w_{2} x_{2}+\ldots+v_{m} x_{m}+b\right)}\right)$
$=\arg \min _{w, b} \sum_{i=1}^{n} \log \left(1+e^{-y_{i}\left(w_{1} x_{2}+w_{2} x_{2}+\ldots+w_{m} x_{m}+b\right)}\right)$
Look familiar? Hint: anybody reading the book?

56

57

59

58

60

61

63

62

64

65

66

69

Error minimization

How do we find the minimum of an equation?

$$
\operatorname{error}(h)=\sum_{i=1}^{n}\left|y_{i}-h\left(f_{i}\right)\right|
$$

Take the derivative, set to 0 and solve (going to be a min or a max)

Any problems here?
Ideas?

71

70

72
Learn a line h that minimizes an error function:
$\operatorname{error}(h)=\sum_{i=1}^{n}\left(y_{i}-h\left(f_{i}\right)\right)^{2}$
in the case of a 2 d line:

$$
\operatorname{error}(h)=\sum_{i=1}^{n}(y_{i}-\underbrace{\left.\left(w_{1} x_{1}+w_{0}\right)\right)^{2}}_{\text {function for a line }}
$$

I

73

75
Multiple linear regression

If we have m features, then we have a line in m dimensions

Linear regression

We'd like to minimize the error

Find w_{1} and w_{0} such that the error is minimized

$$
\operatorname{error}(h)=\sum_{i=1}^{n}\left(y_{i}-\left(w_{1} f_{i}+w_{0}\right)\right)^{2}
$$

We can solve this in closed form

Multiple linear regression

We can still calculate the squared error like before

$$
h(\bar{f})=w_{0}+w_{1} f_{1}+w_{2} f_{2}+\ldots+w_{m} f_{m}
$$

$\operatorname{error}(h)=\sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} f_{1}+w_{2} f_{2}+\ldots+w_{m} f_{m}\right)\right)^{2}$ Still can solve this exactly!

76

Logistic function

$$
\text { logistic }=\frac{1}{1+e^{-x}}
$$

77

Basic steps for probabilistic modeling

Step 1: pick a model	Probabilistic models
Which model do we use, i.e. how do we calculate p(feature, label)?	
estimate the probabilities for the model	How do train the model, i.e. how to we we estimate the probabilities for the model?
Step 3 (optional): deal with overfitting	How do we deal with overfitting?

79

Logistic regression

Find the best fit of the data based on a logistic

78

Probabilistic models summarized

Two classification models:

\square Naïve Bayes (models joint distribution)
\square Logistic Regression (models conditional distribution) - In practice this tends to work better if all you want to do is classify

Priors/smoothing/regularization

- Important for both models
- In theory: allow us to impart some prior knowledge
- In practice: avoids overfitting and often tune on development data

80

