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Chapter 1

Probability

Probability theory provides a mathematical foundation to concepts such as “proba-
bility”, “information”, “belief”, “uncertainty”, “confidence”, “randomness”, “vari-
ability”, “chance” and “risk”. Probability theory is important to empirical sci-
entists because it gives them a rational framework to make inferences and test
hypotheses based on uncertain empirical data. Probability theory is also useful
to engineers building systems that have to operate intelligently in an uncertain
world. For example, some of the most successful approaches in machine per-
ception (e.g., automatic speech recognition, computer vision) and artificial intel-
ligence are based on probabilistic models. Moreover probability theory is also
proving very valuable as a theoretical framework for scientists trying to under-
stand how the brain works. Many computational neuroscientists think of the brain
as a probabilistic computer built with unreliable components, i.e., neurons, and
use probability theory as a guiding framework to understand the principles of
computation used by the brain. Consider the following examples:

• You need to decide whether a coin is loaded (i.e., whether it tends to favor
one side over the other when tossed). You toss the coin 6 times and in all
cases you get “Tails”. Would you say that the coin is loaded?

• You are trying to figure out whether newborn babies can distinguish green
from red. To do so you present two colored cards (one green, one red)
to 6 newborn babies. You make sure that the 2 cards have equal overall
luminance so that they are indistinguishable if recorded by a black and white
camera. The 6 babies are randomly divided into two groups. The first group
gets the red card on the left visual field, and the second group on the right
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8 CHAPTER 1. PROBABILITY

visual field. You find that all 6 babies look longer to the red card than the
green card. Would you say that babies can distinguish red from green?

• A pregnancy test has a 99 % validity (i.e., 99 of of 100 pregnant women test
positive) and 95 % specificity (i.e., 95 out of 100 non pregnant women test
negative). A woman believes she has a 10 % chance of being pregnant. She
takes the test and tests positive. How should she combine her prior beliefs
with the results of the test?

• You need to design a system that detects a sinusoidal tone of 1000Hz in the
presence of white noise. How should design the system to solve this task
optimally?

• How should the photo receptors in the human retina be interconnected to
maximize information transmission to the brain?

While these tasks appear different from each other, they all share a common prob-
lem: The need to combine different sources of uncertain information to make ra-
tional decisions. Probability theory provides a very powerful mathematical frame-
work to do so. Before we go into mathematical aspects of probability theory I
shall tell you that there are deep philosophical issues behind the very notion of
probability. In practice there are three major interpretations of probability, com-
monly called the frequentist, the Bayesian or subjectivist, and the axiomatic or
mathematical interpretation.

1. Probability as a relative frequency
This approach interprets the probability of an event as the proportion of
times such ane event is expected to happen in the long run. Formally, the
probability of an event E would be the limit of the relative frequency of
occurrence of that event as the number of observations grows large

P (E) = lim
n→∞

nE

n
(1.1)

where nE is the number of times the event is observed out of a total of
n independent experiments. For example, we say that the probability of
“heads” when tossing a coin is 0.5. By that we mean that if we toss a coin
many many times and compute the relative frequency of “heads” we expect
for that relative frequency to approach 0.5 as we increase the number of
tosses.
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This notion of probability is appealing because it seems objective and ties
our work to the observation of physical events. One difficulty with the ap-
proach is that in practice we can never perform an experiment an infinite
number of times. Note also that this approach is behaviorist, in the sense
that it defines probability in terms of the observable behavior of physical
systems. The approach fails to capture the idea of probability as internal
knowledge of cognitive systems.

2. Probability as uncertain knowledge.

This notion of probability is at work when we say things like “I will proba-
bly get an A in this class”. By this we mean something like “Based on what
I know about myself and about this class, I would not be very surprised if I
get an A. However, I would not bet my life on it, since there are a multitude
of factors which are difficult to predict and that could make it impossible
for me to get an A”. This notion of probability is “cognitive” and does not
need to be directly grounded on empirical frequencies. For example, I can
say things like “I will probably die poor” even though I will not be able to
repeat my life many times and count the number of lives in which I die poor.

This notion of probability is very useful in the field of machine intelligence.
In order for machines to operate in natural environments they need knowl-
edge systems capable of handling the uncertainty of the world. Probability
theory provides an ideal way to do so. Probabilists that are willing to rep-
resent internal knowledge using probability theory are called “Bayesian”,
since Bayes is recognized as the first mathematician to do so.

3. Probability as a mathematical model. Modern mathematicians avoid the
frequentist vs. Bayesian controversy by treating probability as a mathemat-
ical object. The role of mathematics here is to make sure probability theory
is rigorously defined and traceable to first principles. From this point of
view it is up to the users of probability theory to apply it to whatever they
see fit. Some may want to apply it to describe limits of relative frequencies.
Some may want to apply it to describe subjective notions of uncertainty, or
to build better computers. This is not necessarily of concern to the math-
ematician. The application of probability theory to those domains will be
ultimately judged by its usefulness.
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1.1 Intuitive Set Theory
We need a few notions from set theory before we jump into probability theory.
In doing so we will use intuitive or “naive” definitions. This intuitive approach
provides good mnemonics and is sufficient for our purposes but soon runs into
problems for more advanced applications. For a more rigorous definition of set
theoretical concepts and an explanation of the limitations of the intuitive approach
you may want to take a look at the Appendix.

• Set: A set is a collection of elements. Sets are commonly represented using
curly brackets containing a collection of elements separated by commas.
For example

A = {1, 2, 3} (1.2)

tells us that A is a set whose elements are the first 3 natural numbers. Sets
can also be represented using a rule that identifies the elements of the set.
The prototypical notation is as follows

{x : x follows a rule} (1.3)

For example,

{x : x is a natural number and x is smaller than 4 } (1.4)

• Outcome Space: The outcome space is a set whose elements are all the
possible basic outcomes of an experiment.1 The sample space is also called
sample space, reference set, and universal set and it is commonly repre-
sented with the capital Greek letter “omega”, Ω. We call the elements of the
sample space “outcomes” and represent them symbolically with the small
Greek letter “omega”, ω.

Example 1: If we roll a die, the outcome space could be

Ω = {1, 2, 3, 4, 5, 6} (1.5)

In this case the symbol ω could be used to represent either 1,2,3,4,5 or 6.
1The empty set is not a valid sample space.
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Example 2: If we toss a coin twice, we can observe 1 of 4 outcomes:
(Heads, Heads), (Heads, Tails), (Tails, Heads), (Tails, Tails). In this case we
could use the following outcome space

Ω = {(H, H), (H, T ), (T, H), (T, T )} (1.6)

and the symbol ω could be used to represent either (H, H), or (H, T ), or
(T, H), or (T, T ). Note how in this case each basic outcome contains 2
elements. If we toss a coin n times each basic outcome ω would contain n
elements.

• Singletons: A singleton is a set with a single element. For example the set
{4} is a singleton, since it only has one element. On the other hand 4 is not
a singleton since it is an element not a set.2

• Element inclusion: We use the symbol ∈ to represent element inclusion.
The expression ω ∈ A tells us that ω is an element of the set A. The
expression ω "∈ A tells us that ω is not an element of the set A. For example,
1 ∈ {1, 2} is true since 1 is an element of the set {1, 2}. The expression
{1} ∈ {{1}, 2} is also true since the singleton {1} is an element of the set
{{1}, 2}. The expression {1} "∈ {1, 2} is also true, since the set {1} is not
an element of the set {1, 2}.

• Set inclusion: We say that the set A is included in the set B or is a subset of
B if all the elements of A are also elements of B. We represent set inclusion
with the symbol ⊂. The expression A ⊂ B tells us that both A and B are
sets and that all the elements of A are also elements of B. For example the
expression {1} ⊂ {1, 2} is true since all the elements of the set {1} are in
the set {1, 2}. On the other hand 1 ⊂ {1, 2} is not true since 1 is an element,
not a set.3

• Set equality: Two sets A and B are equal if all elements of A belong to B
and all elements of B belong to A. In other words, if A ⊂ B and B ⊂ A.
For example the sets {1, 2, 3} and {3, 1, 1, 2, 1} are equal.

• Set Operations: There are 3 basic set operations:
2The distinction between elements and sets does not exist in axiomatic set theory, but it is

useful when explaining set theory in an intuitive manner.
3For a more rigorous explanation see the Appendix on axiomatic set theory.
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1. Union: The union of two sets A and B is another set that includes all
elements of A and all elements of B. We represent the union operator
with this symbol ∪
For example, if A = {1, 3, 5} and B = {2, 3, 4}, then A ∪ B =
{1, 2, 3, 4, 5}. More generally

A ∪ B = {ω : ω ∈ A or ω ∈ B} (1.7)

In other words, the set A ∪ B is the set of elements with the property
that they either belong to the set A or to the set B.

2. Intersection: The intersection of two sets A and B is another set C
such that all elements in C belong to A and to B. The intersection
operator is symbolized as ∩. If A = {1, 3, 5} and B = {2, 3, 4} then
A ∩ B = {3}. More generally

A ∩ B = {ω : ω ∈ A and ω ∈ B} (1.8)

3. Complementation: The complement of a set A with respect to a ref-
erence set Ω is the set of all elements of Ω which do not belong to A.
The complement of A is represented as Ac. For example, if the univer-
sal set is {1, 2, 3, 4, 5, 6} then the complement of {1, 3, 5} is {2, 4, 6}.
More generally

Ac = {ω : ω ∈ Ω and ω "∈ A} (1.9)

• Empty set: The empty set is a set with no elements. We represent the null
set with the symbol ∅. Note Ωc = ∅, ∅c = Ω, and for any set A

A ∪ ∅ = A (1.10)
A ∩ ∅ = ∅ (1.11)

• Disjoint sets: Two sets are disjoint if they have no elements in common,
i.e., their intersection is the empty set. For example, the sets {1, 2} and {1}
are not disjoint since they have an element in common.

• Collections: A collection of sets is a set of sets, i.e., a set whose elements
are sets. For example, if A and B are the sets defined above, the set {A, B}
is a collection of sets.
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• Power set: The power set of a set A is the a collection of all possible sets
of A. We represent it as P(A). For example, if A = {1, 2, 3} then

P(A) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, A} (1.12)

Note that 1 is not an element of P(A) but {1} is. This is because 1 is an
element of A, not a set of A.

• Collections closed under set operations: A collection of sets is closed
under set operations if any set operation on the sets in the collection results
in another set which still is in the collection. If A = {1, 3, 5} and B =
{2, 3, 4}, the collection C = {A, B} is not closed because the set A ∩ B =
{3} does not belong to the collection. The collection C = {Ω, ∅} is closed
under set operations, all set operations on elements of C produce another set
that belongs to C. The power set of a set is always a closed collection.

• Sigma algebra: A sigma algebra is a collection of sets which is closed when
set operations are applied to its members a countable number of times. The
power set of a set is always a sigma algebra.

• Natural numbers: We use the symbol N to represent the natural numbers,
i.e., {1, 2, 3, . . .}. One important property of the natural numbers is that if
x ∈ N then x + 1 ∈ N.

• Integers: We use the symbol Z to represent the set of integers, i.e., {. . . ,
−3, −2, −1, 0, 1, 2, 3, . . .}. Note N ⊂ Z. One important property of the
natural numbers is that if x ∈ Z then x + 1 ∈ Z and x − 1 ∈ Z .

• Real numbers: We use the symbol R to represent the real numbers, i.e.,
numbers that may have an infinite number of decimals. For example, 1,
2.35, −4/123,

√
2, and π, are real numbers. Note N ⊂ Z ⊂ R.

• Cardinality of sets:

– We say that a set is finite if it can be put in one-to-one correspondence
with a set of the form {1, 2, . . . , n}, where n is a fixed natural number.

– We say that a set is infinite countable if it can be put in one-to-one
correspondence with the natural numbers.

– We say that a set is countable if it is either finite or infinite countable.
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– We say that a set is infinite uncountable if it has a subset that can be
put in one-to-one correspondence with the natural numbers, but the set
itself cannot be put in such a correspondence. This includes sets that
can be put in one-to-one correspondence with the real numbers.

1.2 Events
We have defined outcomes as the elements of a reference set Ω. In practice we
are interested in assigning probability values not only to outcomes but also to
sets of outcomes. For example we may want to know the probability of getting
an even number when rolling a die. In other words, we want the probability of
the set {2, 4, 6}. In probability theory set of outcomes to which we can assign
probabilities are called events. The collection of all events is called the event
space and is commonly represented with the letter F . Not all collections of sets
qualify as event spaces. To be an event space, the collection of sets has to be a
sigma algebra (i.e., it has to be closed under set operations). Here is an example:

Example: Consider the sample space Ω = {1, 2, 3, 4, 5, 6}. Is the collection of
sets {{1, 2, 3}, {4, 5, 6}} a valid event space?
Answer: No, it is not a valid event space because the union of {1, 2, 3} and
{4, 5, 6} is the set Ω = {1, 2, 3, 4, 5, 6} which does not belong to F . On the other
hand the set {∅, {1, 2, 3}, {4, 5, 6}, Ω} is a valid event space. Any set operation
using the sets in F results into another set which is in F .

Note: The outcome space Ω and the event space F are different sets. For ex-
ample if the outcome space were Ω = {H, T} a valid event space would be
F = {Ω, ∅, {H}, {T}}. Note that Ω "= F . The outcome space contains the
basic outcomes of an experiments. The event space contains sets of outcomes.

1.3 Probability measures
When we say that the probability of rolling an even number is 0.5, we can think
of this as an assignment of a number (i.e., 0.5) to a set ,i.e., to the set {2, 4, 6}.
Mathematicians think of probabilities as function that “measures” sets, thus the
name probability measure. For example, if the probability of rolling an even
number on a die is 0.5, we would say that the probability measure of the set
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{2, 4, 6} is 0.5. Probability measures are commonly represented with the letter
P (capitalized). Probability measures have to follow three constraints, which are
known as Kolmogorov’s axioms:

1. The probability measure of events has to be larger or equal to zero: P (A) ≥
0 for all A ∈ F .

2. The probability measure of the reference set is 1

P (Ω) = 1 (1.13)

3. If the sets A1, A2, . . . ∈ F are disjoint then

P (A1 ∪ A2 ∪ · · · ) = P (A1) + P (A2) + · · · (1.14)

Example 1: A fair coin. We can construct a probability space to describe
the behavior of a coin. The outcome space consists of 2 elements, represent-
ing heads and tails Ω = {H, T}. Since Ω is finite, we can use as the event
space the set of all sets in Ω, also known as the power set of Ω. In our case,
F = {{H}, {T}, {H, T}, ∅}. Note F is closed under set operations so we can
use it as an event space.

The probability measure P in this case is totally defined if we simply say
P ({H}) = 0.5. The outcome of P for all the other elements of F can be inferred:
we already know P ({H}) = 0.5 and P ({H, T}) = 1.0. Note the sets {H} and
{T} are disjoint, moreover {H} ∪ {T} = Ω, thus using the probability axioms

P ({H, T}) = 1 = P ({H}) + P ({T}) = 0.5 + P ({T}) (1.15)

from which it follows P ({T}) = 0.5. Finally we note that Ω and ∅ are disjoint
and their union is Ω, using the probability axioms it follows that

1 = P (Ω) = P (Ω ∪ ∅) = P (Ω) + P (∅) (1.16)

Thus P (∅) = 0. Note P qualifies as a probability measure: for each element of
F it assigns a real number and the assignment is consistent with the three axiom
of probability.

Example 2: A fair die. In this case the outcome space is Ω = {1, 2, 3, 4, 5, 6},
the event space is the power set of Ω, the set of all sets of Ω, F = P(Ω), and
P ({i}) = 1/6, for i = 1, . . . , 6. I will refer to this as the fair die probability
space.
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Example 3: A loaded die. We can model the behavior of a loaded die by as-
signing non negative weight values to each side of the die. Let wi represent the
weight of side i. In this case the outcome space is Ω = {1, 2, 3, 4, 5, 6}, the event
space is the power set of Ω, the set of all sets of Ω, F = P(Ω), and

P ({i}) = wi/(w1 + · · ·+ w6), (1.17)

Note that if all weight values are equal, this probability space is the same as the
probability space in Example 2.

1.4 Joint Probabilities
The joint probability of two or more events is the probability of the intersection of
those events. For example consider the events A1 = {2, 4, 6}, A2 = {4, 5, 6} in
the fair die probability space. Thus, A1 represents obtaining an even number and
A2 obtaining a number larger than 3.

P (A1) = P ({2} ∪ {4} ∪ {6}) = 3/6 (1.18)

P (A2) = P ({4} ∪ {5} ∪ {6}) = 3/6 (1.19)

P (A1 ∩ A2) = P ({4} ∪ {6}) = 2/6 (1.20)

Thus the joint probability of A1 and A2 is 1/3.

1.5 Conditional Probabilities
The conditional probability of event A1 given event A2 is defined as follows

P (A1 | A2) =
P (A1 ∩ A2)

P (A2)
(1.21)

Mathematically this formula amounts to making A2 the new reference set, i.e., the
set A2 is now given probability 1 since

P (A2 | A2) =
P (A2 ∩ A2

P (A2)
= 1 (1.22)
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Intuitively, Conditional probability represents a revision of the original probability
measure P . This revision takes into consideration the fact that we know the event
A2 has happened with probability 1. In the fair die example,

P (A1 | A2) =
1/3

3/6
=

2

3
(1.23)

in other words, if we know that the toss produced a number larger than 3, the
probability that the number is even is 2/3.

1.6 Independence of 2 Events
The notion of independence is crucial. Intuitively two events A1 and A2 are inde-
pendent if knowing that A2 has happened does not change the probability of A1.
In other words

P (A1 | A2) = P (A1) (1.24)
More generally we say that the events A and A2 are independent if and only if

P (A1 ∩ A2) = P (A1)P (A2) (1.25)

In the fair die example, P (A1 | A2) = 1/3 and P (A1) = 1/2, thus the two events
are not independent.

1.7 Independence of n Events
We say that the events A1, . . . , An are independent if and only if the following
conditions are met:

1. All pairs of events with different indexes are independent, i.e.,

P (Ai ∩ Aj) = P (Ai)P (Aj) (1.26)

for all i, j ∈ {1, 2, . . . , n} such that i "= j.

2. For all triplets of events with different indexes

P (Ai ∩ Aj ∩ Ak) = P (Ai)P (Aj)P (Ak) (1.27)

for all i, j, k ∈ {1, . . . , n} such that i "= j "= k.
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3. Same idea for combinations of 3 sets, 4 sets, . . .

4. For the n-tuple of events with different indexes

P (A1 ∩ A2 ∩ · · · ∩ An) = P (A1)P (A2) · · ·P (An) (1.28)

You may want to verify that 2n − n − 1 conditions are needed to check whether
n events are independent. For example, 23 − 3 − 1 = 4 conditions are needed to
verify whether 3 events are independent.

Example 1: Consider the fair-die probability space and let A1 = A2 = {1, 2, 3},
and A3 = {3, 4, 5, 6}. Note

P (A1 ∩ A2 ∩ A3) = P ({3}) = P (A1)P (A2)P (A3) = 1/6 (1.29)

However
P (A1 ∩ A2) = 3/6 "= P (A1)P (A2) = 9/36 (1.30)

Thus A1, A2, A3 are not independent.

Example 2: Consider a probability space that models the behavior a weighted
die with 8 sides: Ω = (1, 2, 3, 4, 5, 6, 7, 8), F = P(Ω) and the die is weighted so
that

P ({2}) = P ({3}) = P ({5}) = P ({8}) = 1/4 (1.31)
P ({1}) = P ({4}) = P ({6}) = P ({7}) = 0 (1.32)

Let the events A1, A2, A3 be as follows

A1 = {1, 2, 3, 4} (1.33)
A2 = {1, 2, 5, 6} (1.34)
A3 = {1, 3, 5, 7} (1.35)

Thus P (A1) = P (A2) = P (A3) = 2/4. Note

P (A1 ∩ A2) = P (A1)P (A2) = 1/4 (1.36)
P (A1 ∩ A3) = P (A1)P (A3) = 1/4 (1.37)
P (A2 ∩ A3) = P (A2)P (A3) = 1/4 (1.38)
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Thus A1 and A2 are independent, A1 and A3 are independent and A2 and A3 are
independent. However

P (A1 ∩ A2 ∩ A3) = P ({1}) = 0 "= P (A1)P (A2)P (A3) = 1/8 (1.39)

Thus A1, A2, A3 are not independent even though A1 and A2 are independent, A1

and A3 are independent and A2 and A3 are independent.

1.8 The Chain Rule of Probability
Let {A1, A2, . . . , An} be a collection of events. The chain rule of probability tells
us a useful way to compute the joint probability of the entire collection

P (A1 ∩ A2 ∩ · · · ∩ An) =

P (A1)P (A2 | A1)P (A3 | A1 ∩ A2) · · ·P (An | A1 ∩ A2 ∩ · · · ∩ An−1)
(1.40)

Proof: Simply expand the conditional probabilities and note how the denomi-
nator of the term P (Ak | A1 ∩ · · · ∩ Ak−1) cancels the numerator of the previous
conditional probability, i.e.,

P (A1)P (A2 | A1)P (A3 | A1 ∩ A2) · · ·P (An | A1 ∩ · · · ∩ An−1) = (1.41)

P (A1)
P (A2 ∩ A1)

P (A1)

P (A3 ∩ A2 ∩ A1)

P (A1 ∩ A2)
· · · P (A1 ∩ · · · ∩ An)

P (A1 ∩ · · · ∩ An−1)
(1.42)

= P (A1 ∩ · · · ∩ An) (1.43)

Example: A car company has 3 factories. 10% of the cars are produced in
factory 1, 50% in factory 2 and the rest in factory 3. One out of 20 cars produced
by the first factory are defective. 99% of the defective cars produced by the first
factory are returned back to the manufacturer. What is the probability that a car
produced by this company is manufactured in the first factory, is defective and is
not returned back to the manufacturer.
Let A1 represent the set of cars produced by factory 1, A2 the set of defective cars
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and A3 the set of cars not returned. We know

P (A1) = 0.1 (1.44)
P (A2 | A1) = 1/20 (1.45)

P (A3 | A1 ∩ A2) = 1 − 99/100 (1.46)

Thus, using the chain rule of probability

P (A ∩ A2 ∩ A3) = P (A1)P (A2 | A1)P (A3 | A1 ∩ A2) = (1.47)
(0.1)(0.05)(0.01) = 0.00005 (1.48)

1.9 The Law of Total Probability
Let {H1, H2, . . .} be a countable collection of sets which is a partition of Ω. In
other words

Hi ∩ Hj = ∅, for i "= j, (1.49)
H1 ∪ H2 ∪ · · · = Ω. (1.50)

In some cases it is convenient to compute the probability of an event D using the
following formula,

P (D) = P (H1 ∩ D) + P (H2 ∩ D) + · · · (1.51)
This formula is commonly known as the law of total probability (LTP)

Proof: First convince yourself that {H1 ∩ D, H2 ∩ D, . . .} is a partition of D,
i.e.,

(Hi ∩ D) ∩ (Hj ∩ D) = ∅, for i "= j, (1.52)
(H1 ∩ D) ∪ (H2 ∩ D) ∪ · · · = D. (1.53)

Thus

P (D) = P ((H1 ∩ D) ∪ (H2 ∩ D) ∪ · · · ) = (1.54)
P (H1 ∩ D) + P (H2 ∩ D) + · · · (1.55)

We can do the last step because the partition is countable.

!
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Example: A disease called pluremia affects 1 percent of the population. There
is a test to detect pluremia but it is not perfect. For people with pluremia, the test
is positive 90% of the time. For people without pluremia the test is positive 20%
of the time. Suppose a randomly selected person takes the test and it is positive.
What are the chances that a randomly selected person tests positive?:

Let D represent a positive test result, H1 not having pluremia, H2 having
pluremia. We know P (H1) = 0.99, P (H2) = 0.01. The test specifications tell us:
P (D | H1) = 0.2 and P (D | H2) = 0.9. Applying the LTP

P (D) = P (D ∩ H1) + P (D ∩ H2) (1.56)
= P (H1)P (D | H1) + P (H2)P (D | H2) (1.57)
= (0.99)(0.2) + (0.01)(0.9) = 0.207 (1.58)

1.10 Bayes’ Theorem
This theorem, which is attributed to Bayes (1744-1809), tells us how to revise
probability of events in light of new data. It is important to point out that this
theorem is consistent with probability theory and it is accepted by frequentists
and Bayesian probabilists. There is disagreement however regarding whether the
theorem should be applied to subjective notions of probabilities (the Bayesian ap-
proach) or whether it should only be applied to frequentist notions (the frequentist
approach).

Let D ∈ F be an event with non-zero probability, which we will name . Let
{H1, H2, . . .} be a countable collection of disjoint events, i.e,

H1 ∪ H2 ∪ · · · = Ω (1.59)
Hi ∩ Hj = ∅ if i "= j (1.60)

We will refer to H1, H2, . . . as “hypotheses”, and D as “data”. Bayes’ theorem
says that

P (Hi | D) =
P (D | Hi)P (Hi)

P (D | H1)P (H1) + P (D | H2)P (H2) + · · ·
(1.61)

where

• P (Hi) is known as the prior probability of the hypothesis Hi. It evaluates
the chances of a hypothesis prior to the collection of data.
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• P (Hi | D) is known as the posterior probability of the hypothesis Hi given
the data.

• P (D | H1), P (D | H2), . . . are known as the likelihoods.

Proof: Using the definition of conditional probability

P (Hi | D) =
P (Hi ∩ D)

P (D)
(1.62)

Moreover, by the law of total probability

P (D) = P (D ∩ H1)+P (D ∩ H2) + · · · = (1.63)
P (D | H1)P (H1) + P (D | H2)P (H2) + · · · (1.64)

!

Example: A disease called pluremia affects 1 percent of the population. There
is a test to detect pluremia but it is not perfect. For people with pluremia, the test
is positive 90% of the time. For people without pluremia the test is positive 20%
of the time. Suppose a randomly selected person takes the test and it is positive.
What are the chances that this person has pluremia?:

Let D represent a positive test result, H1 not having pluremia, H2 having
pluremia. Prior to the the probabilities of H1 and H2 are as follows: P (H2) =
0.01, P (H1) = 0.99. The test specifications give us the following likelihoods:
P (D | H2) = 0.9 and P (D | H1) = 0.2. Applying Bayes’ theorem

P (H2 | D) =
(0.9)(0.01)

(0.9)(0.01) + (0.2)(0.99)
= 0.043 (1.65)

Knowing that the test is positive increases the chances of having pluremia from 1
in a hundred to 4.3 in a hundred.

1.11 Exercises
1. Briefly describe in your own words the difference between the frequentist,

Bayesian and mathematical notions of probability.
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2. Go to the web and find more about the history of 2 probability theorists
mentioned in this chapter.

3. Using diagrams, convince yourself of the rationality of De Morgan’s law:

(A ∪ B)c = Ac ∩ Bc (1.66)

4. Try to prove analytically De Morgan’s law.

5. Urn A has 3 black balls and 6 white balls. Urn B has 400 black balls and
400 white balls. Urn C has 6 black balls and 3 white balls. A person first
randomly chooses one of the urns and then grabs a ball randomly from the
chosen urn. What is the probability that the ball be black? If a person
grabbed a black ball. What is the probability that the ball came from urn B?

6. The probability of catching Lyme disease after on day of hiking in the Cuya-
maca mountains are estimated at less than 1 in 10000. You feel bad after a
day of hike in the Cuyamacas and decide to take a Lyme disease test. The
test is positive. The test specifications say that in an experiment with 1000
patients with Lyme disease, 990 tested positive. Moreover. When the same
test was performed with 1000 patients without Lyme disease, 200 tested
positive. What are the chances that you got Lyme disease.

7. This problem uses Bayes’ theorem to combine probabilities as subjective
beliefs with probabilities as relative frequencies. A friend of yours believes
she has a 50% chance of being pregnant. She decides to take a pregnancy
test and the test is positive. You read in the test instructions that out of
100 non-pregnant women, 20% give false positives. Moreover, out of 100
pregnant women 10% give false negatives. Help your friend upgrade her
beliefs.

8. In a communication channel a zero or a one is transmitted. The probability
that a zero is transmitted is 0.1. Due to noise in the channel, a zero can be
received as one with probability 0.01, and a one can be received as a zero
with probability 0.05. If you receive a zero, what is the probability that a
zero was transmitted? If you receive a one what is the probability that a one
was transmitted?

9. Consider a probability space (Ω,F , P ). Let A and B be sets of F , i.e., both
A and B are sets whose elements belong to Ω. Define the set operator ′′−′′
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as follows
A − B = A ∩ Bc (1.67)

Show that P (A − B) = P (A) − P (A ∩ B)

10. Consider a probability space whose sample space Ω is the natural numbers
(i.e., 1,2,3, . . .). Show that not all the natural numbers can have equal prob-
ability.

11. Prove that any event is independent of the universal event Ω and of the null
event ∅.

12. Suppose ω is an elementary outcome, i.e., ω ∈ Ω. What is the difference be-
tween ω and {ω}?. How many elements does ∅ have?. How many elements
does {∅} have?

13. You are a contestant on a television game show. Before you are three closed
doors. One of them hides a car, which you want to win; the other two hide
goats (which you do not want to win).
First you pick a door. The door you pick does not get opened immediately.
Instead, the host opens one of the other doors to reveal a goat. He will then
give you a chance to change your mind: you can switch and pick the other
closed door instead, or stay with your original choice. To make things more
concrete without losing generality concentrate on the following situation

(a) You have chosen the first door.
(b) The host opens the third door, showing a goat.

If you dont switch doors, what is the probability of wining the car? If you
switch doors, what is the probability of wining the car? Should you switch
doors?

14. Linda is 31 years old, single, outspoken and very bright. She majored in
philosophy. As a student she was deeply concerned with issues of discrim-
ination and social justice, and also participated in anti-nuclear demonstra-
tions. Which is more probable?

(a) Linda is a bank teller?
(b) Linda is a bank teller who is active in the feminist movement?



Chapter 2

Random variables

Up to now we have studied probabilities of sets of outcomes. In practice, in many
experiment we care about some numerical property of these outcomes. For exam-
ple, if we sample a person from a particular population, we may want to measure
her age, height, the time it takes her to solve a problem, etc. Here is where the
concept of a random variable comes at hand. Intuitively, we can think of a random
variable (rav) as a numerical measurement of outcomes. More precisely, a random
variable is a rule (i.e., a function) that associates numbers to outcomes. In order
to define the concept of random variable, we first need to see a few things about
functions.

Functions: Intuitively a function is a rule that associates members of two sets.
The first set is called the domain and the second set is called the target or
codomain. This rule has to be such that an element of the domain should not
be associated to more than one element of the codomain. Functions are described
using the following notation

f : A → B (2.1)

where f is the symbol identifying the function, A is the domain and B is the
target. For example, h : R → R tells us that h is a function whose inputs are real
numbers and whose outputs are also real numbers. The function h(x) = (2)(x)+4
would satisfy that description. Random variables are functions whose domain is
the outcome space and whose codomain is the real numbers. In practice we can
think of them as numerical measurements of outcomes. The input to a random
variable is an elementary outcome and the output is a number.

25
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Example: Consider the experiment of tossing a fair coin twice. In this case the
outcome space is as follows:

Ω = {(H, H), (H, T ), (T, H), (T, T )} . (2.2)

One possible way to assign numbers to these outcomes is to count the number
of heads in the outcome. I will name such a function with the symbol X , thus
X : Ω → R and

X(ω) =






0 if ω = (T, T )

1 if ω = (T, H) or ω = (H, T )

2 if ω = (H, H)

(2.3)

In many cases it is useful to define sets of Ω using the outcomes of the random
variable X . For example the set {ω : X(ω) ≤ 1} is the set of outcomes for which
X associates a number smaller or equal to 1. In other words

{ω : X(ω) ≤ 1} = {(T, T ), (T, H), (H, T )} (2.4)

Another possible random variable for this experiment may measure whether the
first element of an outcome is “heads”. I will denote this random variable with the
letter Y1. Thus Y1 : Ω → R and

Y1(ω) =

{
0 if ω = (T, T ) or ω = (T, H)

1 if ω = (H, H) or ω = (H, T )
(2.5)

Yet another random variable, which I will name Y2 may tell us whether the second
element of an outcome is heads.

Y2(ω) =

{
0 if ω = (T, T ) or ω = (H, T )

1 if ω = (H, H) or ω = (T, H)
(2.6)

We can also describe relationships between random variables. For example, for
all outcomes ω in Ω it is true that

X(ω) = Y1(ω) + Y2(ω) (2.7)

This relationship is represented succinctly as

X = Y1 + Y2 (2.8)



27

Example: Consider an experiment in which we select a sample of 100 stu-
dents from UCSD using simple random sampling (i.e., all the students have equal
chance of being selected and the selection of each students does not constrain the
selection of the rest of the students). In this case the sample space is the set of
all possible samples of 100 students. In other words, each outcome is a sample
that contains 100 students.1 A possible random variable for this experiment is the
height of the first student in an outcome (remember each outcome is a sample with
100 students). We will refer to this random variable with the symbol H1. Note
given an outcome of the experiment, (i.e., a sample of 100 students) H1 would
assign a number to that outcome. Another random variable for this experiment
is the height of the second student in an outcome. I will call this random vari-
able H2. More generally we may define the random variables H1, . . . , H100 where
Hi : Ω → R such that Hi(ω) is the height of the subject number i in the sample ω.
The average height of that sample would also be a random variable, which could
be symbolized as H̄ and defined as follows

H̄(ω) =
1

100
(H1(ω) + · · ·+ H100(ω)) for all ω ∈ Ω (2.9)

or more succinctly

H̄ =
1

100
(H1 + · · ·+ H100) (2.10)

I want you to remember that all these random variables are not numbers, they
are functions (rules) that assign numbers to outcomes. The output of these func-
tions may change with the outcome, thus the name random variable.

Definition A random variable X on a probability space (Ω,F , P ) is a function
X : Ω → R. The domain of the function is the outcome space and the target is
the real numbers.2

Notation: By convention random variables are represented with capital letters.
For example X : Ω → R, tells us that X is a random variable. Specific values of a
random variable are represented with small letters. For example, X(ω) = u tells

1The number of possible outcomes is n!/(100! (n− 100)!) where n is the number of students
at UCSD.

2Strictly speaking the function has to be Borel measurable (see Appendix), in practice the
functions of interest to empirical scientists are Borel measurable so for the purposes of this book
we will not worry about this condition.
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us that the “measurement” assigned to the outcome ω by the random variable X
is u. Also I will represents sets like

{ω : X(ω) = u} (2.11)

with the simplified notation
{X = u} (2.12)

I will also denote probabilities of such sets in a simplified, yet misleading, way.
For example, the simplified notation

P (X = u) (2.13)

or
P ({X = u}) (2.14)

will stand for
P ({ω : X(ω) = u}) (2.15)

Note the simplified notation is a bit misleading since for example X cannot pos-
sibly equal u since the first is a function and the second is a number.

Definitions:

• A random variable X is discrete if there is a countable set or real numbers
{x1, x2, . . .} such that P (X ∈ {x1, x2, . . .}) = 1.

• A random variable X is continuous if for all real numbers u the probability
that X takes that value is zero. More formally, for all u ∈ R, P (X = u) =
0.

• A random variable X ismixed if it is not continuous and it is not discrete.

2.1 Probability mass functions.
A probability mass function is a function pX : R → [0, 1] such that

pX(u) = P (X = u) for all u ∈ R. (2.16)
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Note: If the random variable is continuous, then pX(u) = 0 for all values of u.
Thus,

∑

u∈R
pX(u) =






0 if X is continuous
1 if X is discrete
neither 0 nor 1 if X is mixed

(2.17)

where the sum is done over the entire set of real numbers. What follows are
some important examples of discrete random variables and their probability mass
functions.

Discrete UniformRandom Variable: A random variable X is discrete uniform
is there is a finite set of real numbers {x1, . . . , xn} such that

pX(u) =

{
1/n if u ∈ {x1, . . . , xn}
0 else

(2.18)

For example a uniform random variable that assigns probability 1/6 to the numbers
{1, 2, 3, 4, 5, 6} and zero to all the other numbers could be used to model the
behavior of fair dies.

Bernoulli Random Variable: Perhaps the simplest random variable is the so
called Bernoulli random variable, with parameter µ ∈ [0, 1]. The Bernoulli ran-
dom variable has the following probability mass function

pX(y) =






µ if y = 1

1 − µ if y = 0

0 if y "= 1 and y "= 0

(2.19)

For example, a Bernoulli random variable with parameter µ = 0.5 could be used
to model the behavior of a random die. Note such variable would also be discrete
uniform.

Binomial RandomVariable: A random variable X is binomial with parameters
µ ∈ [0, 1] and n ∈ N if its probability mass function is as follows

pX(y) =

{(
n
y

)
µy(1 − µ)n−y if u ∈ {0, 1, 2, 3, . . .}

0 else
(2.20)
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Binomial probability mass functions are used to model the probability of obtaining
y “heads” out of tossing a coin n times. The parameter µ represents the probability
of getting heads in a single toss. For example if we want to get the probability of
getting 9 heads out of 10 tosses of a fair coin, we set n = 10, µ = 0.5 (since the
coin is fair).

pX(9) =

(
10

9

)
(0.5)9(0.5)10−9 =

10!

9!(10 − 9)!
(0.5)10 = 0.00976 (2.21)

Poisson Random Variable A random variable X is Poisson with parameter
λ > 0 if its probability mass function is as follows

pX(u) =

{
λue−λ

u! if u ≥ 0

0 else
(2.22)

Poisson random variables model the behavior of random phenomena that occur
with uniform likelihood in space or in time. For example, suppose on average
a neuron spikes 6 times per 100 millisecond. If the neuron is Poisson then the
probability of observing 0 spikes in a 100 millisecond interval is as follows

pX(0) =
60e−6

0!
= 0.00247875217 (2.23)

2.2 Probability density functions.
The probability density of a random variable X is a function fX : R → R such
that for all real numbers a > b the probability that X takes a value between a and
b equals the area of the function under the interval [a, b]. In other words

P (X ∈ [a, b]) =

∫ b

a

fX(u)du (2.24)

Note if a random variable has a probability density function (pdf) then

P (X = u) =

∫ u

u

fX(x)dx = 0 for all values of u (2.25)

and thus the random variable is continuous.
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Interpreting probability densities: If we take an interval very small the area
under the interval can be approximated as a rectangle, thus, for small ∆x

P (X ∈ (x, x + ∆x]) ≈ fX(x)∆x (2.26)

fX(u) ≈ P (X ∈ (x, x + ∆x])

∆x
(2.27)

Thus the probability density at a point can be seen as the amount of probability
per unit length of a small interval about that point. It is a ratio between two dif-
ferent ways of measuring a small interval: The probability measure of the interval
and the length (also called Lebesgue measure) of the interval. What follows are
examples of important continuous random variables and their probability density
functions.

Continuous Uniform Variables: A random variable X is continuous uniform
in the interval [a, b], where a and b are real numbers such that b > a, if its pdf is
as follows;

fX(u) =

{
1/(b − a) if u ∈ [a, b]

0 else
(2.28)

Note how a probability density function can take values larger than 1. For exam-
ple, a uniform random variable in the interval [0, 0.1] takes value 10 inside that
interval and 0 everywhere else.

Continuous Exponential Variables: A random variable X is called exponen-
tial if it has the following pdf

fX(u) =

{
0 if u < 0

λ exp(−λx) if u ≥ 0
(2.29)

we can calculate the probability of the interval [1, 2] by integration

P ({X ∈ [1, 2]}) =

∫ 2

1

λ exp(−λx)dx =
[
− exp(−λx)

]2

1
(2.30)

if λ = 1 this probability equals exp(−1) − exp(−2) = 0.2325.
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Gaussian Random Variables: A random variable X is Gaussian, also known
as normal, with parameters µ ∈ R and σ2 > 0 if its pdf is as follows

f(x) =
1√

2πσ2
exp(−1

2
(
x − µ

σ
)2) (2.31)

where π = 3.1415 · · · , µ is a parameter that controls the location of the center of
the function and σ is a parameter than controls the spread of the function.. Here-
after whenever we want to say that a random variable X is normal with parameters
µ and σ2 we shall write it as X ∼ N(µ, σ2). If a Gaussian random variable X
has zero mean and standard deviation equal to one, we say that it is a standard
Gaussian random variable, and represent it X ∼ N(0, 1).

The Gaussian pdf is very important because of its ubiquitousness in nature thus
the name “Normal”. The underlying reason why this distribution is so widespread
in nature is explained by an important theorem known as the central limit theo-
rem. We will not prove this theorem here but it basically says that observations
which are the result of a sum of a large number of random and independent in-
fluences have a cumulative distribution function closely approximated by that of
a Gaussian random variable. Note this theorem applies to many natural observa-
tions: Height, weight, voltage fluctuations, IQ... All these variables are the result
of a multitude of effects which when added up make the observations distribute
approximately Gaussian.

One important property of Gaussian random variables is that linear combi-
nations of Gaussian random variables produce Gaussian random variables. For
example, if X1 and X2 are random variables, then Y = 2+4X1 +6X2 would also
be a Gaussian random variable.

2.3 Cumulative Distribution Function.

The cumulative distribution function, of a random variable X is a function FX :
R → [0, 1] such that

FX(u) = P ({X ≤ u}) (2.32)

For example, for the random variable described in (2.3)
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FX(u) =






0.0 if u < 0.0

1/4 if u ≥ 0.0 and u < 1

3/4 if u ≥ 1 and u < 2

1.0 if u ≥ 2

(2.33)

The relationship between the cumulative distribution function, the probability
mass function and the probability density function is as follows:

FX(u) =

{∑
x≤u pX(u) if X is a discrete random variable∫ u

−∞ fX(x)dx if X is a continuous random variable
(2.34)

Example: To calculate the cumulative distribution function of a continuous ex-
ponential random variable X with parameter λ > 0 we integrate the exponential
pdf

FX(u) =

{∫ u

0 λ exp(−λx)dx if u ≥ 0

0 else
(2.35)

And solving the integral
∫ u

0

λ exp(−λx)dx =

[
− exp(−λx)

]u

0

= 1 − exp(−λu) (2.36)

Thus the cumulative distribution of an exponential random variable is as follows

FX(u) =

{
1 − exp(−λu) if u ≥ 0

0 else
(2.37)

Observation: We have seen that if a random variable has a probability den-
sity function then the cumulative density function can be obtained by integration.
Conversely we can differentiate the cumulative distribution function to obtain the
probability density function

fX(u) =
dFX(u)

du
(2.38)
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A Property of Cumulative distribution Functions: Here is a property of cu-
mulative distribution which has important applications. Consider a random vari-
able X with cumulative distribution FX now suppose we define a new random
variable Y such that for each outcome ω

Y (ω) = a + bX(ω) (2.39)

where a and b "= 0 are real numbers. More succinctly we say

Y = a + bX (2.40)

If we know the cumulative distribution of Y we can easily derive the cumulative
distribution of Y .

FY (u) = P (Y ≤ u) = P (a + bX ≤ u) = P (X ≤ u − a

b
}) = FX(

u − a

b
)

(2.41)

Example: Let X be an exponential random variable with parameter λ, i.e.,

FX(u) =

{
0 if u < 0

1 − exp(−λu) if u ≥ 0
(2.42)

Let Y = 1 + 2X . In this case a = 1 and b = 2. Thus the cumulative distribution
of Y is

FY (u) = FX((u − 1)/2) =

{
0 if (u − 1)/2 < 0

1 − exp(−λ(u − 1)/2) if (u − 1)/2 ≥ 0
(2.43)

2.4 Exercises
1. Distinguish the following standard symbols P , pX , FX , fX , X , x

2. Find the cumulative distribution function of a Bernoulli random variable X
with parameter µ.

3. Find the cumulative distribution of a uniform random variable with param-
eters a, b.
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4. Consider a uniform random variable in the interval [0, 1].

(a) Calculate the probability of the interval [0.1, 0.2]

(b) Calculate the probability of 0.5.

5. Let X be a random variable with probability mass function

pX(u) =

{
1/5 if u ∈ {1, 2, 3, 4, 5}
0 else

(2.44)

(a) Find FX(4)

(b) Find P ({X ≤ 3} ∩ {X ≤ 4})
(c) Plot the function hX(t) = P ({X = t} | {X ≥ t}) for t = 1, 2, 3, 4, 5.

This function is commonly known as the “hazard function” of X . If
you think of X as the life time of a system, hX(t) tells us the proba-
bility that the system fails at time t given that it has not failed up to
time t. For example, the hazard function of human beings looks like
a U curve with a extra bump at the teen-years and with a minimum at
about 30 years.

6. Let X be a continuous random variable with pdf

fX(u) =






0.25 if u ∈ [−3,−1]

0.25 if u ∈ [1, 3]

0 else
(2.45)

(a) Plot fX . Can it be a probability density function? Justify your re-
sponse.

(b) Plot FX

7. Show that if X is a continuous random variable with pdf fX and Y = a+bX
where and a, b are real numbers. Then

fY (v) = (1/b)fX(
u − a

b
) (2.46)

hint: Work with cumulative distributions and then differentiate them to get
densities.

8. Show that if X ∼ N(µ, σ2) then Y = a + bX is Gaussian.
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Chapter 3

Random Vectors

In many occasions we need to model the joint behavior of more than one variable.
For example, we may want to describe whether two different stocks tend to fluc-
tuate in a somewhat linked manner or whether high levels of smoking covary with
high lung cancer rates. In this chapter we examine the joint behavior of more than
one random variables. To begin with, we will start working with pairs of random
variables.

3.1 Joint probability mass functions
The joint probability mass function of the random variables X and Y is a function
pX,Y : R2 → [0, 1], such that for all (u, v) ∈ R2

pX,Y (u, v) = P ({X = u} ∩ {Y = v}) (3.1)

hereafter, we use the simplified notation P (X = u, Y = u) to represent P ({X =
u} ∩ {Y = v}), i.e., the probability measure of the set

{ω : (X(ω) = u)and(Y (ω) = v)} (3.2)

3.2 Joint probability density functions
The joint probability density function of the continuous random variables X and
Y is a function fX,Y : R2 → [0,∞) such that for all (u, v) ∈ R2 and for all

37
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(∆u, ∆v) ∈ R2

P (X ∈ [u, u + ∆u], Y ∈ [v, v + ∆v]) =

∫ u+∆u

u

∫ v+∆v

v

fX,Y (u, v) dv du (3.3)

Interpretation Note if ∆u and ∆v are so small that fX,Y (u, v) is approximately
constant over the area of integration then

P (X ∈ [u, u + ∆u], Y ∈ [v, v + ∆v]) ≈ fX,Y (u, v)∆u ∆v (3.4)

In other words, the probability that (X, Y ) take values in the rectangle [u, u +
∆u] × [v, v + ∆v] is approximately the area of the rectangle times the density at
a point in the rectangle.

3.3 Joint Cumulative Distribution Functions
The joint cumulative distribution of two random variables X and Y is a function
FX,Y : R2 → [0, 1] such that

FX,Y (u, v) = P ({X ≤ u} ∩ {Y ≤ v}) (3.5)

note if X and Y are discrete then

FX,Y (u, v) =
∑

x≤u

∑

y≤v

pX,Y (u, v) (3.6)

and if X and Y are continuous then

FX,Y (u, v) =

∫ u

−∞

∫ v

−∞
fX,Y (u, v) dv du (3.7)

3.4 Marginalizing
In many occasions we know the joint probability density or probability mass func-
tion of two random variables X and Y and we want to get the probability den-
sity/mass of each of the variables in isolation. Such a process is called marginal-
ization and it works as follows:

pX(u) =
∑

v∈R
pX,Y (u, v) (3.8)
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and if the random variables are continuous

fX(u) =

∫ ∞

−∞
fX,Y (u, v) dv (3.9)

Proof: Consider the function h : R → R

h(u) =

∫ ∞

−∞
fX,Y (u, v) dv (3.10)

We want to show that h is the probability density function of X . Note for all
a, b ∈ R such that a ≤ b

P (X ∈ [a, b]) = P (X ∈ [a, b], Y ∈ R) =

∫ b

a

fX,Y (u, v) dv du =

∫ b

a

h(u) du

(3.11)
showing that h is indeed the probability density function of X . A similar argument
can be made for the discrete case.

3.5 Independence
Intuitively, two random variables X and Y are independent if knowledge about
one of the variables gives us no information whatsoever about the other variable.
More precisely, the random variables X and Y are independent if and only if all
events of the form {X ∈ [u, u+∆u]} and all events of the form {Y ∈ [v, v+∆v]}
are independent. If the random variable is continuous, a necessary and sufficient
condition for independence is that the joint probability density be the product of
the densities of each variable

fX,Y (u, v) = fX(u)fY (v) (3.12)

for all u, v ∈ R. If the random variable is discrete, a necessary and sufficient con-
dition for independence is that the joint probability mass function be the product
of the probability mass for each of the variables

pX,Y (u, v) = pX(u)pY (v) (3.13)

for all u, v ∈ R.
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3.6 Bayes’ Rule for continuous data and discrete hy-
potheses

Perhaps the most common application of Bayes’ rule occurs when the data are
represented by a continuous random variable X , and the hypotheses by a discrete
random variable H . In such case, Bayes’ rule works as follows

pH|X(i | u) =
fX|H(u|i) pH(i)

fX(u)
(3.14)

where pH|X : R2 → [0, 1] is known as the conditional probability mass function
of H given X and it is defined as follows

pH|X(i | u) = lim
∆u→0

P (H = i | X ∈ [u, u + ∆u]) (3.15)

fX|H : R2 → R+ is known as the conditional probability density function of X
given H and it is defined as follows: For all a, b ∈ R such that a ≤ b,

P (X ∈ [a, b] | H = i) =

∫ b

a

fX|H(u|i) du (3.16)

Proof: Applying Bayes’ rule to the events {H = i} and {X ∈ [u, u + ∆u]}

P (H = i | X ∈ [u, u + ∆u]) =
P (X ∈ [u, u + ∆u] | H = i) P (H = i)

P (X ∈ [u, u + ∆u])
(3.17)

=

∫ u+∆u

u fX|H(x|i) dx P (H = i)
∫ u+∆u

u fX(x) dx
(3.18)

Taking limits and approximating areas with rectangles

lim
∆u→0

P (H = i | X ∈ [u, u + ∆u]) =
∆ufX|H(u|i)pH(i)

∆ufX(u)
(3.19)

The ∆u terms cancel out, completing the proof.
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3.6.1 A useful version of the LTP
In many cases we are not given fX directly and we need to compute it using
fX|H and pH . This can be done using the following version of the law of total
probability:

fX(u) =
∑

j∈Range(H)

pH(j) fX|H(u|j) (3.20)

Proof: Note that for all a, b ∈ R, with a ≤ b
∫ b

a

∑

j∈Range(H)

pH(j)fX|H(u|j) du =
∑

j∈Range(H)

pH(j)

∫ b

a

fX|H(u|j) du (3.21)

=
∑

j∈Range(H)

pH(j)P (X ∈ [a, b] | H = j) = P (X ∈ [a, b]) (3.22)

and thus
∑

j∈Range(H) pH(j)fX|H(u|j) is the probability density of X .

Example: Let H be a Bernoulli random variable with parameter µ = 0.5. Let
Y0 ∼ N(0, 1), Y1 ∼ N(1, 1) and

X = (1 − H)(Y0) + (H)(Y1) (3.23)

Thus,

pH(0) = pH(1) = 0.5 (3.24)

fX|H(u | i) =
1√
2π

e−(u−i)2/2 for i ∈ {1, 2}. (3.25)

Suppose we are given the value u ∈ R and we want to know the posterior prob-
ability that H takes the value 0 given that X took the value u. To do so, first we
apply LTP to compute fX(u)

fX(u) = (0.5)
1√
2π

(
e−u2/2 +e−(u−1)2/2

)
= (0.5)

1√
2π

eu2/2

(
1+e2u−1

)
(3.26)

Applying Bayes’ rule,

pH|X(0 | u) =
1

1 + e−(1−2u)
(3.27)

So, for example, if u = 0.5 the probability that H takes the value 0 is 0.5. If u = 1
the probability that H takes the value 0 drops down to 0.269.
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3.7 Random Vectors and Stochastic Processes
A random vector is a collection of random variables organized as a vector. For
example if X1, . . . , Xn are random variables then

X = (X1, Y, . . . , Xn)
′ (3.28)

is a random vector. A stochastic process is an ordered set of random vectors. For
example, if I is an indexing set and Xt, is a random vector for all t ∈ I then

X = (Xi : i ∈ I) (3.29)

is a random process. When the indexing set is countable, Y is called a “discrete
time” stochastic process. For example,

X = (X1, Y, X3, . . .) (3.30)

is a discrete time random process. If the indexing set are the real numbers, then
Y is called a “continuous time” stochastic process. For example, if X is a random
variable, the ordered set of random vectors

X = (Xt : t ∈ R) (3.31)

with
Xt(ω) = sin(2πtX(ω)) (3.32)

is a continuous time stochastic process.



Chapter 4

Expected Values

The expected value (or mean) of a random variable is a generalization of the notion
of arithmetic mean. It is a number that tells us about the “center of gravity” or
average value we would expect to obtain is we averaged a very large number
of observations from that random variable. The expected value of the random
variable X is represented as E(X) or with the Greek letter µ, as in µX and it is
defined as follows

E(X) = µX =

{∑
u∈R pX(u)u for discrete ravs∫ +∞

−∞ pX(u)u du for continuous ravs
(4.1)

We also define the expected value of a number as the number itself, i.e., for all
u ∈ R

E(u) = u (4.2)

Example: The expected value of a Bernoulli random variable with parameter µ
is as follows

E(X) = (1 − µ)(0.0) + (µ)(1.0) = µ (4.3)

Example: A random variable X with the following pdf

pX(u) =

{
1

b−a if u ∈ [a, b]

0 if u "∈ [a, b]
(4.4)

43
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is known as a uniform [0, 1] continuous random variable. Its expected value is as
follows

E(X) =

∫ ∞

−∞
pX(u)u du =

∫ b

a

1

b − a
u du

=
1

(b − a)

[u2

2

]b

a
=

=
1

(b − a)
(
b2 − a2

2
) = (a + b)/2 (4.5)

Example: The expected value of an exponential random variable with param-
eter λis as follows (see previous chapter for definition of an exponential random
variable)

E(X) =

∫ ∞

−∞
upX(u)du =

∫ ∞

0

uλ exp(−λu)du (4.6)

and using integration by parts

E(X) =
[
− u exp(−λu)

]∞
0

+

∫ ∞

0

λ exp(−λu)du = −
[
λ exp(−λu)

]∞
0

=
1

λ
(4.7)

4.1 Fundamental Theorem of Expected Values
This theorem is very useful when we have a random variable Y which is a function
of another random variable X . In many cases we may know the probability mass
function, or density function, for X but not for Y . The fundamental theorem of
expected values allows us to get the expected value of Y even though we do not
know the probability distribution of Y . First we’ll see a simple version of the
theorem and then we will see a more general version.

Simple Version of the Fundamental Theorem: Let X : Ω → R be a rav and
h : R → R a function. Let Y be a rav defined as follows:

Y (ω) = h(X(ω)) for all ω ∈ R (4.8)

or more succinctly
Y = h(X) (4.9)
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Then it can be shown that

E(Y ) =

{∑
u∈R pX(u)h(u) for discrete ravs∫ +∞

−∞ pX(u)h(u) du for continuous ravs
(4.10)

Example: Let X be a Bernoulli rav and Y a random variable defined as Y =
(X−0.5)2. To find the expected value of Y we can apply the fundamental theorem
of expected values with h(u) = (u − 0.5)2. Thus,

E(Y ) =
∑

u∈R
pX(u)(u − 0.5)2 = pX(0)(0 − 0.5)2 + pX(1)(1 − 0.5)2

= (0.5)(0.5)2 + (0.5)(−0.5)2 = 0.25 (4.11)

Example: The average entropy, or information value (in bits) of a random vari-
able X is represented as H(X) and is defined as follows

H(X) = −E(log2 pX(X)) (4.12)

To find the entropy of a Bernoulli random variable X with parameter µ we can
apply the fundamental theorem of expected values using the function h(u) =
log2 pX(u) . Thus,

H(X) =
∑

u∈R
pX(u) log2 pX(u) = pX(0) log2 pX(0) + pX(1) log2 pX(1)

= (µ) log2(µ) + (1 − µ) log2(1 − µ) (4.13)

For example, if µ = 0.5, then

H(X) = (0.5) log2(0.5) + (0.5) log2(0.5) = 1 bit (4.14)

General Version of the Fundamental Theorem: Let X1, . . . , Xn be random
variables, let Y = h(X1, . . . , Xn), where h : Rn → R is a function. Then

E(Y ) =

{∑
(u1, . . . , un) ∈ RnpX1,...,Xn(u1, . . . , un)h(u1, . . . , un) for discrete ravs∫ +∞

−∞ · · ·
∫ +∞
−∞ pX1,...,Xn(u1, . . . , un)h(u1, . . . , un)du1 · · · dun for continuous ravs

(4.15)
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4.2 Properties of Expected Values
Let X and Y be two random variables and a and b two real numbers. Then

E(X + Y ) = E(X) + E(Y ) (4.16)
and

E(a + bX) = a + bE(X) (4.17)
Moreover if X and Y are independent then

E(XY ) = E(X)E(Y ) (4.18)
We will prove these properties using discrete ravs. The proofs are analogous for
continuous ravs but substituting sums by integrals.

Proof: By the fundamental theorem of expected values

E(X + Y ) =
∑

u∈R

∑

v∈R
pX,Y (u, v)(u + v)

= (
∑

u∈R
u

∑

v∈R
pX,Y (u, v)) + (

∑

v∈R
v

∑

u∈R
pX,Y (u, v))

=
∑

u∈R

upX(u) +
∑

v∈R
vpY (v) = E(X) + E(Y ) (4.19)

where we used the law of total probability in the last step.

Proof: Using the fundamental theorem of expected values

E(a + bX) =
∑

u

pX(u)(a + bu)

= a
∑

u∈R
pX(u) + b

∑

u

upX(u) = a + bE(X) (4.20)

Proof: By the fundamental theorem of expected values

E(XY ) =
∑

u∈R

∑

v∈R
pX,Y (u, v)uv (4.21)

if X and Y are independent then pX,Y (u, v) = pX(u)pY (v). Thus

E(XY ) = [
∑

u

upX(u)] [
∑

v

vpY (v)] = E(X)E(Y ) (4.22)

!
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4.3 Variance
The variance of a random variable X is a number that represents the amount
of variability in that random variable. It is defined as the expected value of the
squared deviations from the mean of the random variable and it is represented as
Var(X) or as σ2

X

Var(X) = σ2
X = E[(X−µX)2] =

{∑
u∈R pX(u)(u − µX)2 for discrete ravs∫ +∞

−∞ pX(u)(u − µX)2du for continuous ravs
(4.23)

The standard deviation of a random variable X is represented as Sd(X) or σ and
it is the square root of the variance of that random variable

Sd(X) = σX =
√

Var(X) (4.24)

The standard deviation is easier to interpret than the variance for it uses the same
units of measurement taken by the random variable. For example if the random
variable X represents reaction time in seconds, then the variance is measured
in seconds squares, which is hard to interpret, while the standard deviation is
measured in seconds. The standard deviation can be interpreted as a “typical”
deviation from the mean. If an observation deviates from the mean by about one
standard deviation, we say that that amount of deviation is “standard”.

Example: The variance of a Bernoulli random variable with parameter µ is as
follows

Var(X) = (1 − µ)(0.0 − µ)2 + (µ)(1.0 − µ)2 = (µ)(1 − µ) (4.25)

Example: For a continuous uniform [a, b] random variable X , the pdf is as fol-
lows

pX(u) =

{
1

b−a if u ∈ [a, b]

0 if u "∈ [a, b]
(4.26)

which we have seen as expected value µX = (a + b)/2. Its variance is as follows

σ2
X =

∫ +∞

−∞
upX(u)du =

1

b − a

∫ b

a

(u − (a + b)/2)2du (4.27)
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and doing a change of variables y = (u − (a + b)/2)

σ2
X =

1

b − a

∫ (b−a)/2

(a−b)/2

y2dy =
1

b − a

[
y3/3

](b−a)/2

(a−b)/2
=

b − a

12
(4.28)

Exercise: We will show that in a Gaussian random variable the parameter µ is
the mean and σ the standard deviation. First note

E(X) =

∫ ∞

−∞
u

1√
2πσ2

exp(−1

2
(
u − µ

σ
)2)du (4.29)

changing to the variable y = (u − µ)

E(X) =
1√

2πσ2

∫ ∞

−∞
y exp(−1

2
(
y

σ
)2)dy

+ µ[
1√

2πσ2

∫ ∞

−∞
exp(−1

2
(
y

σ
)2)] = µ (4.30)

The first term is zero because the integrand is an odd function (i.e., g(−x) =
−g(x). For the variance

Var(X) =
1√

2πσ2

∫ ∞

−∞
(u − µ)2 exp(−1

2
(
u − µ

σ
)2)du (4.31)

changing variables to y = (u − µ)

Var(X) =
1√

2πσ2

∫ ∞

−∞
y y exp(−1

2
(
y

σ
)2)dy (4.32)

and using integration by parts

Var(X) =
1√

2πσ2

(
− σ2

[
y exp(−1

2
(y/σ)2)

]+∞

−∞

+ σ2

∫ ∞

−∞
exp(−1

2
(
y

σ
)2)dy

)
= σ2 (4.33)

4.3.1 Properties of the Variance
Let X and Y be two random variables and a and b two real numbers then

Var(aX + b) = a2Var(X) (4.34)
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and
Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y ) (4.35)

where Cov(X, Y ) is known as the covariance between X and Y and is defined as

Cov(X, Y ) = E[(X − E(X))(Y − E(Y ))] (4.36)

Proof:

Var(aX + b) = E[(aX + b − E(aX + b))2] = E[(aX + b − aE(X) − b)2]

= E[(a(X − E(X))2] = a2E[(X − E(X))2] = a2Var(X) (4.37)

Proof:

Var(X + Y ) = E(X + Y − E(X + Y ))2 = E((X − µX) + (Y − µY ))2

= E[(X − µX)2] + E[(Y − µY )2] + 2E[(X − µX)(Y − µY )] (4.38)

!

If Cov(X, Y ) = 0 we say that the random variables X and Y are uncorrelated.
In such case the variance of the sum of the two random variables equals the sum
of their variances.

It is easy to show that if two random variables are independent they are also
uncorrelated. To see why note that

Cov(X, Y ) = E[(X−µX)(Y − µY )] = E(XY ) − µY E(X) (4.39)
− µXE(Y ) + µXµY = E(XY ) − E(X)E(Y ) (4.40)

we have already seen that if X and Y are independent then E(XY ) = E(X)E(Y )
and thus X and Y are uncorrelated.

However two random variables may be uncorrelated and still be dependent.
Think of correlation as a linear form of dependency. If two variables are uncor-
related it means that we cannot use one of the variables to linearly predict the
other variable. However in uncorrelated variables there may still be non-linear
relationships that make the two variables non-independent.
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Example: Let X, Y be random variables with the following joint pmf

pX,Y (u, v) =






1/3 if u = −1 and v = 1

1/3 if u = 0 and v = 0

1/3 if u = 1 and v = 1

0 else

(4.41)

show that X and Y are uncorrelated but are not independent.

Answer: Using the fundamental theorem of expected values we can compute
E(XY )

E(XY ) = (1/3)(−1)(1) + (1/3)(0)(0) + (1/3)(1)(1) = 0 (4.42)

From the joint pmf of X and Y we can marginalize to obtain the pmf of X and of
Y

pX(u) =






1/3 if u = −1

1/3 if u = 0

1/3 if u = 1

0 else

(4.43)

pY (v) =






1/3 if v = 0

2/3 if v = 1

0 else
(4.44)

Thus

E(X) = (1/3)(−1) + (1/3)(0) + (1/3)(1) = 0 (4.45)
E(Y ) = (1/3)(0) + (2/3)(1) = 2/3 (4.46)
Cov(X, Y ) = E(XY ) − E(X)E(Y ) = 0 − (0)(2/3) = 0 (4.47)

Thus X and Y are uncorrelated. To show that X and Y are not independent note
that

pX,Y (0, 0) = 1/3 "= pX(0)pY (0) = (1/3)(1/3) (4.48)
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4.4 Appendix: Using Standard Gaussian Tables
Most statistics books have tables for the cumulative distribution of Gaussian ran-
dom variables with mean µ = 0 and standard deviation σ = 1. Such a cumulative
distribution is known as the standard Gaussian cumulative distribution and it is
represented with the capital Greek letter “Phi”, i.e., Φ. So Φ(u) is the probability
that a standard Gaussian random variable takes values smaller or equal to u. In
many cases we need to know the probability distribution of a Gaussian random
variable X with mean µ different from zero and variance σ2 different from 1. To
do so we can use the following trick

FX(u) = Φ(
x − µ

σ
) (4.49)

For example, the probability that a Gaussian random variable with mean µ = 2
and standard deviation σ = 4 takes values smaller than 6 can be obtained as
follows

P (X ≤ 6) = FX(6) = Φ(
6 − 2

4
) = Φ(1) (4.50)

If we go to the standard Gaussian tables we see that Φ(1) = 0.8413.

Proof: Let Z be a standard Gaussian random variable, and X = µ + σZ. Thus,

E(X) = µ + E(Z) = µ (4.51)

Var(X) = σ2Var(Z) = σ2 (4.52)

Thus, X has the desired mean and variance. Moreover since X is a linear transfor-
mation of Z then X is also Gaussian. Now, using the the properties of cumulative
distributions that we saw in a previous chapter

FX(u) = FZ((u − µ)/σ) = Φ((u − µ)/σ)) (4.53)

!

Example: Let Y be a Gaussian rav with µY = 10 and σ2
Y = 100. Suppose we

want to compute FY (−20). First we compute z = (−20 − µY )/σY = −1. We
go to the standard Gaussian tables and find FZ(−1) = 0.1587 Thus FY (20) =
FZ(−1) = 0.1587.
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4.5 Exercises
1. Let a random variable X represent the numeric outcome of rolling a fair

die, i.e., pX(u) = 1/6 for u ∈ {1, 2, 3, 4, 5, 6}. Find the expected value ,
standard deviation, and average information value of X .

2. Consider the experiment of tossing a fair coin twice. Let X1 be a random
variable taking value 1 if the first toss is heads, and 0 otherwise. Let X2 be
a random variable taking value 1 if the second toss is heads, and 0 else.

(a) Find E(X1), E(X2)

(b) Find Var(X1), Var(X2)

(c) Find Var(X1/2) and Var(X2/2)

(d) Find Var(X1 + X2) and Var[(X1 + X2)/2]

3. Find the information value of a continuous random variable in the interval
[a, b].

4. Show that the variance of an exponential random variable with parameter λ
is 1/λ2.

5. Let X be a standard Gaussian random variable. Using Gaussian tables find:

(a) FX(−1.0)

(b) FX(1.0)

(c) P (−1.0 ≤ X ≤ 1.0)

(d) P (X = 1.0)



Chapter 5

The precision of the arithmetic mean

Consider taking the average of a number of observations all of which are ran-
domly sampled from a large population. Intuitively it seems that as the number
of observations increases this average will get closer and closer to the true popu-
lation mean. In this chapter we quantify how close the sample mean gets to the
population mean as the number of observations in the sample increases. In other
words we want to know how good the mean of a sample of noisy observations is
as an estimate of the “true” value underlying those observations.

Let’s formalize the problem using our knowledge of probability theory. We
start with n independent random variables variables X1, . . . , Xn. We will also as-
sume that all these random variables have the same mean, which we will represent
as µ and the same variance, which we will represent as σ2. In other words

E(X1) = E(X2) = · · · = E(Xn) = µ (5.1)

and
Var(X1) = Var(X2) = · · · = Var(Xn) = σ2 (5.2)

This situation may occur, when our experiment consists of randomly selecting n
individuals from a population (e.g., 20 students from UCSD). In this case the out-
comes of the random experiment consists of a sample of n subjects. The outcome
space is the set of all possible samples of n subjects. The random variable Xi

would represent a measurement of subject number i in the sample. Note that in
this case all random variables have the same mean, which would be equal to the
average observation for the entire population. They also have the same variance,
since all subjects have an equal chance of being in any of the n possible positions
of the samples.
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Given a sample ω we can average the n values taken by the random variables
for that particular sample. We will represent this average as X̄n,

X̄n(ω) =
1

n

n∑

i=1

Xi(ω); for all ω ∈ Ω (5.3)

More concisely,

X̄n =
1

n

n∑

i=1

Xi (5.4)

Note that X̄n is itself a random variable (i.e., a function from the outcome space
to the real numbers). We call this random variable the sample mean.

One convenient way to measure the precision of the sample mean is to com-
pute the expected squared deviation of the sample mean from the true population
mean, i.e., √

E[(X̄n − µ)2] (5.5)

For example, if
√

E[(X̄n − µY )2] = 4.0secs this would tell us that on average the
sample mean deviates from the population mean by about 4.0 secs.

5.1 The sampling distribution of the mean
We can now use the properties of expected values and variances to derive the
expected value and variance of the sample mean .

E(X̄n) =
1

n

n∑

i=1

E(Xi) = µ (5.6)

thus the expected value of the sample mean is the actual population mean of the
random variables. A consequence of this is that

E[(X̄n − µ)2] = E[(X̄n − E(X̄n))2] = Var(X̄n) (5.7)

This takes us directly to our goal. Using the properties of the variance, and con-
sidering that the random variables X1, . . . , Xn are independent we get

V ar(X̄n) =
1

n2

n∑

i=1

Var(Xi) =
σ2

n
(5.8)



5.1. THE SAMPLING DISTRIBUTION OF THE MEAN 55

The standard deviation of the mean is easier to interpret than the variance of the
mean. It roughly represents how much the means of independent randomly ob-
tained samples typically differ from the population mean. Since the standard de-
viation of the mean is so important, many statisticians give it a special name: the
standard error of the mean. Thus the standard error of the mean simply is the
square root of the variance of the mean, and it is represented as Sd(X̄n) or Se(X̄n).
Thus,

Sd(X̄n) =
σ√
n

=
√

E[(X̄n − µ)2] (5.9)

Finally we are done! Equation 5.9 tells us that the uncertainty of the sample
mean (its standard deviation) increases proportionally to the uncertainty about
individual observations (σ) and decreases proportionally to the square root of the
number of observations. Thus, if we want to double the precision of the sample
mean (reduce its standard deviation by half) we need to quadruple the number of
observations in the sample.

Example: Let X1 and X2 be independent Bernoulli random variables with pa-
rameter µ = 0.5. Thus E(X1) = E(X2) = µ = 0.5 and Var(X1) = Var(X2) =
σ2 = 0.25, moreover

E(X̄2) = (0)(0.25) + (0.5)(0.5) + (1)(0.25) = 0.5 = µ (5.10)

Var(X̄2) = σ2/2 = 0.125 (5.11)

5.1.1 Central Limit Theorem
This is a very important theorem which we will not prove here. The theorem tells
us that as n goes to infinity, the cumulative distribution of X̄n is closely approx-
imated by that of a Gaussian random variable with mean E(X̄n) and standard
deviation Sd(X̄n). In practice for n ≥ 30 the Gaussian cumulative distribution
provides very good approximations.

Example: We toss a fair coin 100 times. What is the probability that the pro-
portion of “heads” be smaller or equal to 0.45?

Answer: Tossing a fair coin 100 times can be modeled using 100 independent
identically distributed Bernoulli random variables each of which has parameter
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µ = 0.5. Let’s represent these 100 random variables as X1, . . . , X100 where Xi

takes the value 1 if the ith time we toss the coin we get heads. Thus the proportion
of heads is the average of the 100 random variables, we will represent it as X̄ .

X̄ =
1

100
(X1 + · · · + X100) (5.12)

We know
µ = E(X1) = · · · = E(X100) = 0.5 (5.13)

σ2 = Var(X1) = · · · = Var(X100) = 0.25 (5.14)
Thus

E(X̄) = 0.5 (5.15)
Var(X̄) = σ2/100 = 0.0025 (5.16)

Since n = 100 > 30 the cumulative distribution of X̄ is approximately Gaussian.
Thus

P (X̄ ≤ 0.45) = FX̄(0.45) ≈ Φ(
0.45 − 0.5√

0.0025
) = Φ(−1) = 0.1586 (5.17)

5.2 Exercises
1. The Central Limit Theorem

(a) Goto the book Web site and click on LinuStats → Coin Simulator
(b) Do 1000 replications of a coin tossing experiment. Each experiment

should consists of 10 coin tosses (10 observations per experiment).
The result should be 1000 numbers each of which represents the pro-
portion of tails obtained in a particular experiment. If we encoded
Heads as “0” and tails as “1”, the outcome of a coin toss is an outcome
from a Bernoulli 0,1 random variable with parameter µ = 0.5. The
proportion of tails obtained in 10 tosses is the average of 10 indepen-
dent identically distributed Bernoulli random variables.

X̄ =

∑10
i=1 Xi

10
(5.18)

This average is itself a random variable. Moreover the central limit
theorem tell us that it should be approximately Gaussian. We will
check that now:
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(c) Use the Edit menu in your browser to copy the 1000 numbers obtained
in the coin tossing experiments.

(d) Go back to LinuStats and choose the descriptive statistics page.
(e) Use the Edit menu in your browser to paste the 1000 numbers into the

data window.
(f) Choose a minimum value of 0, maximum value of 1, and window of

0.1
(g) Analyze the data by clicking the appropriate button.
(h) Copy the resulting relative frequency table and transform it into a cu-

mulative distribution function
(i) Copy the Mean and SD (Standard Deviation) of the 1000 numbers.

Explain what this standard deviation means. I’ll call these numbers
µX̄ and σX̄

(j) Compare the obtained cumulative distribution function with that pre-
dicted by a Gaussian distribution with mean µX̄ and standard deviation
σX̄ .

2. The sampling distribution of the mean

(a) Go to the coin simulator and do 1000 experiments each with 1 toss
(i.e., one observation per experiment). Using the same procedure as
in the previous exercise, calculate the mean and standard deviation of
the 1000 experiments. Plot the relative frequency density polygon.
Interpret your results.

(b) Same as the previous question but now toss the coin 2 times per exper-
iment. Obtain the new mean and standard deviation and interpret what
they mean.

(c) Same with 4, 16 and with 32 observations per experiment.
(d) Plot a graph with the obtained means as a function of the number of

tosses.
(e) Plot a graph with the obtained standard deviations as a function of the

number of tosses.
(f) Plot a graph with the obtained variances as a function of the number

of tosses.
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(g) Explain your results. How does the mean, variance, and standard devi-
ation change as the number of observations per experiment increases.
How does the relative frequency density polygon change as the num-
ber of observations per experiment increases? Does it make sense?

3. What is less probable: 1) to get 80 or more tails out of tossing a fair coin 100
times, 2) to get 30 or more tails out of tossing a fair coin 50 times. NOTE:
Since n > 30 you can assume that the cumulative distribution of the mean
is approximately Gaussian.

4. An experimenter inserts intracellular electrodes on a large sample of ran-
domly selected neurons in primary visual cortex (V1). Intracellular elec-
trodes are designed to measure the response of single neurons. The re-
searcher finds the average response of the neurons is 10 mVolts and the
standard deviation 1 mVolt. On a subsequent experiment the researcher
inserts extracellular electrodes on randomly selected location in V1. Extra-
cellular electrodes compute the average response of a number of neurons
around the tip of the electrode. The researcher finds that when the electrode
is extracellular the average response is still 10 mVolts but the standard devi-
ation goes down to 0.01 mVolts. Assume the neurons in V1 are independent
and have identical response distributions.

(a) Explain how the standard deviation of the mean of n independent ran-
dom variables changes as the number of random variables increases.

(b) Estimate how many neurons are having an effect on the extracellular
electrode. Justify your response.



Chapter 6

Introduction to Statistical
Hypothesis Testing

The goal of statistical hypothesis testing is to provide a rational basis for making
inferences and decisions about hypotheses based on uncertain data. For exam-
ple based on the results of a experiment with a limited sample of individuals we
may want to decide whether there is enough evidence to say that smoking causes
cancer. There are two major approaches to statistical hypothesis testing: 1) The
classic approach, 2) The Bayesian approach. The classic approach is the standard
used when analysing scientific experiments. The Bayesian approach is dominant
in machine perception, artificial intelligence and engineering applications.

6.1 The Classic Approach
Classic statisticians (also known as frequentists) view scientific hypotheses as
propositions with a fixed truth value. Within this approach a hypothesis is either
true or false and thus it makes no sense to talk about its probability. For example,
for a frequentist the hypothesis “Smoking causes cancer” is either true or false.
It makes no sense to say that there is a 99 % chance that smoking causes can-
cer. In this approach we perform experiments, gather data and if the data provide
sufficient evidence against a hypothesis we reject the hypothesis.

Here is an example that illustrates how the classic approach works in practice.
Suppose we want to disprove the hypothesis that a particular coin is fair. We toss
the coin 100 times and get 74 % tails. We model our observations as a random
variable X̄ which is the average of 100 iid Bernoulli ravs with unknown parameter
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µ

X̄ =
1

100

100∑

i=1

Xi (6.1)

The statement that we want to reject is called the null hypothesis. In this case
the null hypothesis is that µ = 0.5, i.e., that the coin is fair. We do not know
E(X̄) nor Var(X̄). However we know what these two values would be if the null
hypothesis were true. We represent the conditional expected value of X̄ assuming
that the null hypothesis is true as E(X̄ | Hn true). The variance of X̄ assuming
that the null hypothesis is true is represented as Var(X̄ | Hn true). In our example

E(X̄ | Hn true) = 0.5 (6.2)
Var(X̄ | Hn true) = 0.25/100 (6.3)

Moreover, due to the central limit theorem the cumulative distribution of X̄ should
be approximately Gaussian. We note that a proportion of 0.74 tails corresponds to
the following standard score

Z =
0.74 − 0.5√

0.25/100
= 4.8 (6.4)

Using the standard Gaussian tables we find
P ({X̄ ≥ 4.8} | Hn true) < 1/106 (6.5)

If the null hypothesis were true the chances of obtaining 74 % tails or more are
less than one in a million. We now have two alternatives: 1) We can keep the null
hypothesis in which case we would explain our observations as an extremely un-
probable event due to chance. 2) We can reject the null hypothesis in view of the
fact that if it were correct the results of our experiment would be an extremely im-
probable event. Sir Ronald Fisher, a very influential classic statistician, explained
these options as follows:

The force with which such conclusion is supported logically is that of a simple
disjunction: Either an exceptionally rare chance event has occurred, or the theory
or random distribution [the null hypothesis] is not true [?]

In our case obtaining 74 % tails would be such a rare event if the null hypoth-
esis were true that we feel compelled to reject the null hypothesis and conclude
that the coin is loaded. But what if we had obtained say 55 % tails? Would that
be enough evidence to reject the null hypothesis? What should we consider as
enough evidence? What standards should we use to reject a hypothesis? The next
sections explain the classic approach to these questions. To do so it is convenient
to introduce the concept of Type I and Type II errors.
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6.2 Type I and Type II errors

Jerzy Neyman and E.S. Pearson developed the bulk of the classic approach to
hypothesis testing between 1928 and 1933. Neyman and Pearson emphasized
hypothesis testing as a procedure to make decisions rather than as a procedure to
falsify hypothesis. In their own words

Without hoping to know whether each separate hypothesis is true or false, we
may search for rules to govern our behavior with regard to them, in following
which we insure that, in the long run experience, we shall not be too often wrong.
[?]

They viewed the task of statistical hypothesis testing as similar to the detec-
tion of signals in the presence of noise. Let me illustrate this concept with the
following analogy. Suppose you are a fire detector. You are hanging up there in
the ceiling of a house and your task is to decide whether the house is on fire. Once
in a while you measure the amount of smoke passing through your sensors. If the
amount is beyond a critical value you announce the house residents that the house
is on fire. Otherwise you stay quiet.

In this analogy the null hypothesis is the theoretical possibility that the house
is not on fire and the alternative hypothesis is that the house is on fire. Measuring
how much smoke there is out there is the equivalent of conducting an experiment
and summarizing the results with some statistic. The information available to us
is imperfect and thus we never know for sure whether the house is or is not on fire.
There is a myriad of intervening variables that may randomly change the amount
of smoke. Sometimes there is a lot of smoke in the house but there is no fire,
sometimes, due to sensor failure, there may be fire but our sensors do not activate.
Due to this fact we can make two types of mistakes:

1. We can have false alarms, situations where there is no fire but we announce
that there is a fire. This type of error is known as a Type I error. In scientific
research, type I errors occur when scientists reject null hypotheses which in
fact are true.

2. We can alsomiss the fire. This type of error as Type II error. Type II errors
occur when scientists do not reject null hypothesis which in fact are false.

Note that for type I errors to happen two things must occur:
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Figure 6.1: An illustration of the process of statistical hypothesis testing. The
upper figure shows the distribution of smoke when there is no fire. The lower
figure shows the distribution when there is fire. It can be seen that on average there
is more smoke when there is fire but there is overlap between the two conditions.
The task of hypothesis testing is to decide whether there is a fire based only on the
amount of smoke measured by the sensor.

(1) The null hypothesis must be true.

2) We reject it.
(6.6)
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and for type II errors to happen two things must occur:

(1) The null hypothesis must be false.

(2) We do not reject it.
(6.7)

6.2.1 Specifications of a decision system
The performance of a decision system can be specified in terms of its potential to
make errors when the null hypothesis is true and when the null hypothesis is false.

• The type I error specification is the probability of making errors when the
null hypothesis is true. This specification is commonly represented with the
symbol α. For example if we say that a test has α ≤ 0.05 we guarantee that
if the null hypothesis is true the test will not make more than 1/20 mistakes.

• The type II error specification is the probability of making errors when
the null hypothesis is false. This specification is commonly represented
with the symbol β. For example if we say that for a test β is unknown we
say that we cannot guarantee how it will behave when the null hypothesis is
actually false.

• The Power specification is the probability of correctly rejecting the null
hypothesis when it is false. Thus the power specification is 1.0 - β.

The current standard in the empirical sciences dictates that for a scientific test to
be acceptable the type I error specification has to be smaller or equal to 1/20
(i.e., α ≤ 0.05). The standard does not dictate what the type II error specification
should be. In the next chapter we will see examples of statistical tests that meet
this type I error specification.

6.3 The Bayesian approach
The essence of the Bayesian approach can be summarized as follows:
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• A recognition of the fact that humans not only make binary decisions about
hypotheses but also want to assign degrees of belief to the different hypothe-
ses

• An assumption that probability is useful to describe beliefs not just relative
frequencies.

• An emphasis on the problem of how to combine external data with prior
knowledge to modify beliefs.

To Fisher’s statement that

“It should be possible to draw conclusions from the data alone,
without apriori assumptions.” [?],

L. Savage, a well known Bayesian replies that

“We had a slogan about letting the data speak for themselves, but
when they do, they tell us how to modify our opinions, not what opin-
ion is justifiable.” [?]

In practice the main difference between Bayesians and frequentists is that Bayesians
treat hypotheses as if they were probabilistic events and thus are willing to assign
them probability values. Here is an example of how the Bayesian approach would
work in practice.

Example: A doctor believes that a patient has a 10% chance of having Lyme
disease. She gives the patient a blood test and the test comes out positive. The
manual for this test says that that out of 100 patients with Lyme disease, 80 % test
positive. Moreover, out of 100 patients with no Lyme disease 30 % test positive.
What is the probability that the patient has Lyme disease?

Answer: If you were a pure classic you would be unwilling to answer this ques-
tion. You would simply say that probabilities should not be applied to empirical
hypotheses. This person either has Lyme disease or he does not. You would sim-
ply say that your tools do not apply to this problem. If you were Bayesian you
would be willing to use probability theory to play with knowledge and internal
beliefs so this question makes sense to you. You could represent the hypothesis
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that the patient has Lyme disease as an event H1 which has a prior probability of
10 %.

P (H1) = 0.1 (6.8)
P (H0) = 1 − P (H1) = 0.9 (6.9)

where H0 represents the hypothesis that the patient does not have Lyme disease.
The positive test is a data event D with the following characteristics

P (D | H1) = 0.8 (6.10)
P (D | H0) = 0.3 (6.11)

Now you could apply Bayes’ theorem to compute the probability of the hypothe-
ses given the data

P (H1 | D) =
(0.8)(0.1)

(0.8)(0.1) + (0.3)(0.9)
= 0.23 (6.12)

After seeing the results of the test, it would be rational for the Doctor to update
her beliefs and give her patient a 23 % probability of having Lyme disease. Note
the emphasis here is on upgrading beliefs based on empirical data. The emphasis
is not on deciding whether a hypothesis is true or false. Of course it is now up to
the doctor and her patient to use the 23 % probability figure to perhaps get a better
test or to evaluate the costs and benefits of treatments.

6.4 Exercises
1. Urn A contains 50% black balls 50 % white balls. Urn B contains 45 %

black balls 55 % white balls. You get a sample of n randomly selected balls.
All balls in the sample belong to the same urn but you do not know which
one. Your task is to decide which urn the sample belongs to. Let the null
hypothesis be the idea that the sample comes from Urn A.

(a) Suppose there are 10 balls in the sample (i.e., n = 10).
i. What would the critical value be for a Type I error specification

of 1/20 ?
ii. What would the power specification be? NOTE: in this case we

can calculate the power because it is possible to find the distribu-
tion of the mean assuming the alternative hypothesis is true. In
general this may not be possible.
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iii. What would the critical value be for a Type I error specification
of 1/100 ?

iv. What would the power specification be if we use a Type I error
specification of 1/100?

(b) Same as the previous 4 questions but using n = 20 instead of n = 10.
What did you learn out of this exercise?

2. True or false (justify your response):

(a) Due to the current standards we should expect one out of 20 scientific
studies to be wrong.

(b) An experiment results in a p-value of 0.03, another experiment in a p-
value of 0.0001. Using the current 0.05 standard in both experiments
we reject the null hypothesis. Moreover, in the second experiment
there is a smaller chance of being wrong by rejecting the null hypoth-
esis.

(c) An experiment results in a p-value of 0.00001. Therefore the type I
error specification is 0.00001.

(d) An experiment results in a p-value of 0.5. The probability of making
a type I error in this experiment is unknown.

(e) An experiment results in a p-value of 0.5. The power specification of
this experiment is 0.5.

(f) An experiment results in a p-value of 0.01. The probability of making
a type II error in this experiment is unknown.

(g) An experiment results in a p-value of 0.01. The probability of making
a type I error in this experiment is unknown.

(h) An experiment results in a p-value of 0.01. The type I error specifica-
tion is 0.05.

(i) An experiment results in a p-value of 0.01. The probability of making
a type II error in this experiment zero.

(j) An experiment results in a p-value of 0.01. The probability of making
a type I error in this particular experiment is either 1 or 0.



Chapter 7

Introduction to Classic Statistical
Tests

In the previous chapter we saw that the current standards of empirical science use
classical statistical tests with a type I error specification of 5 %. In this chapter we
see two classic statistical tests: The Z test and the T test. Of the two the second one
is more general and by far more important. The Z test is introduced for historical
reasons and because it serves as a nice steping stone to the T test.

7.1 The Z test
This test is used when the null hypothesis specifies the mean and the variance
of the observations. Let’s see how the test works using the following example.
We toss a coin 100 times and we obtain 55 heads. Is this enough evidence to say
that the coin is loaded?

7.1.1 Two tailed Z test
1. We have n random variables

X1, . . . , Xn (7.1)

where Xi commonly represents a measurements from subject i in a sample
of n subjects. We assume the following:

• The random variables are independent and identically distributed.
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• If n < 30 the random variables are Gaussian.

In our example X1, . . . , Xn are Bernoulli random variables. If the outcome
of toss number i is heads then Xi takes value 1 otherwise it takes value 0.

2. Formulate a null hypothesis that specifies the mean and standard deviation
of the mean. We represent these as E(X̄ | Hn true) and Sd(X̄ | Hn true)

In our example the null hypothesis Hn is that the coin is fair. In such case
E(X̄ | Hn true) = E(Xi | Hn true) = 0.5 and

Sd(X̄ | Hn true) =
Sd(Xi | Hn true)√

n
=

0.5

10
= 0.05 (7.2)

3. Define the random variable Z as follows

Z =
X̄ − E(X̄ | Hn true)

Sd(X̄ | Hn true)
=

X̄ − E(X̄ | Hn true)
Sd(Xi | Hn true)/

√
n

(7.3)

4. Compute, the value taken by the random variable Z,

In our example

Z =
0.55 − 0.5

0.05
= 1 (7.4)

5. If Z "∈ [−1.96, 1.96] reject Hn and report that the results were statistically
significant. Otherwise withhold judgment and report that the resuts were
not statistically significant.

In our example Z ∈ [−1.96, 1.96] so we withhold judgment. We do not have
enough evidence to say that the coin is loaded.

Proof: Since this is a classical test we just need to show that with this procedure
the type I error specification is no larger than 5 %. In other words P (Hnrejected|Hntrue) ≤
0.05. To do so first we will show that if Hn is true then Z is an standard Gaussian
random variable. First note that Z is just a linear combination of X̄
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Z = a + bX̄ (7.5)

a = − E(X̄ | Hn true)
Sd(X̄ | Hn true)

(7.6)

b =
1

Sd(X̄ | Hn true)
(7.7)

If X1, . . . , Xn are Gaussian then X̄ is also Gaussian (because the sum of Gaus-
sian is Gaussian). If X1, . . . , Xn are not Gaussian but n > 30, by the Central
limit theorem, then the cumulative of X̄ is approximately Gaussian. Under these
conditions Z is also Gaussian (because Z is a linear transformation of X̄ and a
linear transformation of a Gaussian rav is also Gaussian). Moreover

E(Z | Hn true) = a + bE(X̄ | Hn true) = 0 (7.8)
Var(Z | Hn true) = b2Var(X̄ | Hn true) = 1 (7.9)

Thus, if the null hypothesis is true and the assumptions of the Z test are met, then
Z is a standard Gaussian random variable and

P (Hn rejected | Hn true) = P (Z "∈ [−1.96, 1.96]) = 2Φ(−1.96) = 1/20 (7.10)

!

7.1.2 One tailed Z test
In this case the null hypothesis includes an entire range of values for the sample
mean. For example, the null hypothesis could be that the expected value of the
mean is smaller than 0. Or that the expected value of the mean is smaller than 3.
The first thing we do is to pick the extreme case proposed by the null hypothesis
and which is finite. For example if the null hypothesis is that the expected value of
the sample mean is larger than 3, then the extreme case is that the expected value
is exactly 3. I’m going to represent this extreme case of the null hypothesis as Hx

to distinguish it from the more general null hypothesis that we want to reject. For
example if the null hypothesis says E(X̄ | Hn true) ≤ 3 the the extreme case of
the null hypothesis would claim E(X̄ | Hx true) = 3.
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1. Formulate the null hypothesis and the extreme hypothesis.

2. Compute the value taken by the random variable Z as in the two-tailed case,
only in this case use expected values given by Hx instead of Hn.

3. If positive values of Z are the only ones inconsistent with Hn and if Z >
1.64 reject Hn. Report that the results were statistically significant. If neg-
ative values of Z are the only ones inconsistent with Hn and if Z < −1.64
then reject the null hypothesis. Report that the results are statistically sig-
nificant. Otherwise withhold judgment. Report that the results were not
statistically significant.

To see that this test also has the desired type I error specification note that

P (Hn rejected | Hn true) ≤ P (Hn rejected | Hxtrue) (7.11)
= P (Z > 1.64) = Φ(−1.64) = 1/20 (7.12)

Thus we have proven that the type I error specification is not larger than 1/20,
making the test acceptable from a classical point of view.

Example We want to show that bees prefer red flowers rather than yellow flow-
ers. We construct 100 plastic flowers 50 of which are yellow and 50 red. Other
than the color the flowers are indistinguishable in appearance. We then measure
for 200 bees the amount of time they spend in yellow versus red flowers. We find
that 160 out of the 200 bees spent more time in the red flowers. Is this enough
evidence to say that bees prefer red flowers?

We can model the preference of each bee as independent Bernoulli random
variables X1, . . . , X200, where Xi = 1 represents the event that bee number i
in the sample spent more time on the red flowers. In our case the sample mean
takes the following value X̄ = 160/200 = 0.8. The null hypothesis says that
E(X̄ | Hn true) ≤ 0.5. This hypothesis covers an entire range of values so a one
tailed test is appropriate. The extreme case of the null hypothesis, symbolized as
Hx says that E(X̄ | Hx true) = 0.5. Thus,

X̄ = 0.8 (7.13)
E(X̄ | Hx) = 0.5 (7.14)

Sd(X̄ | Hx) = Sd(Xi | Hx)/
√

200 = 0.035 (7.15)

Z =
0.8 − 0.5

0.035
= 8.57 (7.16)
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Since positive values of Z contradict Hn and Z > 1.64 we reject the null hypoth-
esis and conclude that bees prefer red flowers over yellow flowers.

7.2 Reporting the results of a classical statistical test
First let us concentrate on the things you should avoid when reporting results:

• Avoid statements like “The null hypothesis was” or “The alternative hy-
pothesis was”. These terms are just used to understand the logic underlying
statistical tests. You should assume that the readers already know about this
logic.

• Avoid statements like “The results prove the idea that”, or “The results dis-
prove the idea that”. As we know, statistical test are not infallible so scien-
tists avoid strong statements like “prove” and “disprove”.

• Avoid statements like “The data shows that very probably there is a differ-
ence between the experimental and the control groups...”. You cannot say
this because we do not know the probability of the null hypothesis. Remem-
ber we are using a classical test and thus the null hypothesis is either true or
false.

• Avoid statements like “The results are statistically insignificant”. The word
insignificant is misleading. Simply say that the results are not statistically
significant.

• Avoid statements like “The results were very significant”. This suggests
that your results are very important or that your type I error specification is
different from that of other scientists. This is misleading since you would
have published your results if your test passed with your type I error speci-
fication.

7.2.1 Interpreting the results of a classical statistical test
If the results are not significant, it basically means that we do not have enough
evidence, for now, to reject the null hypothesis. Here is an example interpretation:

• There is not enough evidence to support the idea that the drug has an effect
on the subjects’ reaction time.
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If the results are significant we can say that the data are not consistent with the
null hypothesis. Here are some standard interpretations of significant results. Note
how we avoided strong words like “prove” in favor of softer words like “support”

• The data support the idea that the drug has an effect on the subjects’ reaction
time.

• The results of this experiment support the idea that drug X has an effect on
reaction time.

7.3 The T-test
One major problem with the Z test is that the null hypothesis needs to specify
the value of Var(X̄). This value is known for Bernoulli random variables, but in
general it is unknown. In such a case, we may estimate the variance of the mean
using our sample information. To do so first define the sample variance as

S2
X =

1

n − 1

n∑

i=1

(Xi − X̄)2 (7.17)

note that the sample variance is a random variable. In the Appendix to this Chapter
we prove that the sample variance is an unbiased estimate of the variance of the
observations, i.e.,

E(S2
X) = Var(Xi) (7.18)

Since S2
X is an unbiased estimate of the variance of the observations, we can

divide it by n to get an unbiased estimate of the variance of the sample mean. We
represent this estimate as S2

X̄

S2
X̄ =

S2
Xi

n
(7.19)

Now remember the Z random variable was defined as follows

Z =
X̄ − E(X̄ | Hn true)

Sd(X̄ | Hn true)
=

X̄ − E(X̄ | Hn true)
Sd(X | Hn true)/

√
n

(7.20)

The T random variable is very similar to the Z random variable except for the fact
that in the denominator it uses an estimate of the variance of the mean instead of
the true variance

T =
X̄ − E(X̄ | Hn true)

SX̄

=
X̄ − E(X̄ | Hn true)

SX/
√

n
(7.21)
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7.3.1 The distribution of T
The distribution of the T random variable was discovered by William Sealy Gos-
set (1876–1937). Gosset was a chemist and mathematician hired by the Guinees
brewery in 1899. Brewing is a process in which statistical analysis had great po-
tential since brewers have to deal with variable materials, temperature changes and
so on. The story goes that at the end of the 19th century scientific methods and
statistical modeling were just beginning to be applied to brewing but the methods
available at the time required large numbers of observations. Gosset had to work
with experiments with small samples, for which the Z test did not work very well.
As a statistician Gosset liked to do everything starting from first principles and
disliked the use of recipes and tabulations. This gave him great flexibility and
power when tackling new problems. He once said “Doing it from first principles
every time preserves mental flexibility”. Gosset was also a very good carpenter,
an activity to which he also applied his devotion to first principles; he disliked the
use of complicated tools and liked doing as much as possible with a pen-knife. In
1908 Gosset published a paper entitled “The probable error of the mean”, where
he described the distribution of the T random variable, as a statistic applicable
to experiments with small numbers of observations. He published this paper un-
der the name “Student”. His desire to remain anonymous gave him a romantic,
unassuming reputation. His theoretical distribution became known as the Student-
distribution, or simply the T-distribution. In fact there is an infinite number of
T-distributions, with each member of the family identified by a parameter known
as the degrees of freedom (df ). The probability density function of T is given by
the following formula:

fT (u) =
1

K(df)
(1 +

u2

df
)−(df+1)/2 (7.22)

K(df) =

∫ ∞

−∞
(1 +

x2

df
)−(df+1)/2 dx (7.23)

In practice, we do not need to worry about the formula for fT (u) since the values
for the cumulative distribution

FT (v) =

∫ v

∞
fT (x)dx (7.24)

appears in most statistics textbooks. Figure 3 shows the shape of the T-distribution
with 1 df. The distribution is bell shaped but it has longer tails than the Gaus-
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Figure 7.1: The t-distribution with one degree of freedom.

sian distribution. When the number of degrees of freedom is very large, the T-
distribution closely approximates the Gaussian distribution.

7.3.2 Two-tailed T-test
Here is the procedure to perform a two-tailed T-test

1. Figure out the expected value of the sample mean if the null hypothesis is
true E(X̄ | Hn true)

2. Compute T the value taken by T for your specific sample.

3. Get the degrees of freedom (i.e., number of independent observations) in
SX̄ . In our case the number of degrees of freedom is n − 1.

4. Go to T tables for n − 1 degrees of freedom, and compute the value c such
that

P (T > c | Hn true) = 1/40 (7.25)

The number c is called the critical value.

5. If T "∈ [−c, c] reject the null hypothesis, otherwise withhold judgment.

Example: We get 3 bags of potato chips from a specific brand. The company
that makes these chips says that on average there are 40 chips per bag. Let Xi

measure the number of chips in bag i. In our sample we have X1 = 30, X2 = 10
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and X3 = 20. Do we have enough evidence to reject the idea that on average there
are 40 chips per bag?

The null hypothesis is that there are 40 chips per bag. Thus E(X̄ |Hn true) =
40. Moreover

X̄ = (30 + 10 + 20)/3 = 20 (7.26)

S2
X =

(30 − 20)2 + (10 − 20)2 + (20 − 20)2)

3 − 1
= 100 (7.27)

SX̄ =
√

S2
X/n =

√
100/3 = 5.77 (7.28)

T =
20 − 40

5.77
= −3.46 (7.29)

df = n − 1 = 2 (7.30)
c = 4.30 (7.31)

I obtained the critical value c = 4.30 using the tables of the T statistic with df = 2.
Since T ∈ [−4.30, 4.30] we withhold judgment. We do not have enough evidence
to reject the null hypothesis.

Proof: This procedure has the correct type I error specification since

P (Hn rejected | Hn true) = P (T "∈[−c, c]) (7.32)
= 2P (T > c | Hn true) = 1/20 (7.33)

Procedure for one-tailed T-test In this case the null hypothesis takes an entire
range. For example, it could say that the expected value of the mean is smaller than
20, not just 20. As with the Z test I will use Hn to represent the null hypothesis
and Hx to represent the extreme case in this null hypothesis. For example if the
null hypothesis says that the expected value of the mean is smaller than 20, then
Hx says that the expected value of the mean is exactly equal to 20. The procedure
to test one-tailed hypotheses is as follows

1. Formulate the null hypothesis and the extreme hypothesis.

2. Compute the value of T and df as in the two-tailed case, only in this case
use expected values given by Hx instead of Hn.

3. Using tables find the value c such that P (T > c | Hx) = 1/20
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4. If positive values of T are the only ones inconsistent with Hn and if T > c
reject Hn. If negative values of T are the only ones inconsistent with Hn

and if T < −c reject the hypothesis. Otherwise withhold judgment.

For example if we want to show that the consumers are being cheated. Then we
want to reject the hypothesis that the average number of chips is larger or equal to
40. In such case the null hypothesis is E(X̄ | Hn) ≥ 40. The extreme case of the
null hypothesis says E(X̄ | Hx) = 40. Moreover only negative values of T are
inconsistent with the null hypothesis. We go to tables and find that for 2 degrees
of freedom P (T > −2.91) = 1/20. Since T = −3.46 is smaller than −2.91, we
have enough evidence to reject the null hypothesis.

Proof: This procedure has the desired type I error specification since

P (Hn rejected | Hn true) ≤ P (T "∈ [−c, c] | Hx true) (7.34)
= 2P (T > c | Hx true) = 1/20 (7.35)

7.3.3 A note about LinuStats
LinuStats, and some T-tables provide probabilities of the absolute value of T , i.e.,

P (|T | ≥ c) = P ({−T ≤ c} ∪ {T ≥ c}) = 2P (T ≥ c) (7.36)

Thus, if you want to obtain the critical value c such that P (T ≥ c) = x then you
need to give LinuStats the value 2x. If you do that LinuStats will give you the
value c such that

P (|T | ≥ c) = 2x (7.37)

from which it follows that

P (T ≥ c) = 2x/2 = x (7.38)

which is what you wanted to begin with.

7.4 Exercises
1. Which of the following is more likely not to belong to a population with

µ = 0 and σ2 = 100. Explain why. (5 points)
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(a) A single subject with a value of 20.
(b) A random, independent sample of 100 subjects with a sample mean of

-2.0
(c) A random, independent sample of 10000 subjects with a sample mean

of 1.0

2. A research team is testing whether newborns have color vision. Ten infants
were tested at the UCSD hospital within their first 3 hours of life. Experi-
menters showed the infants a card with 2 color patches: red and green. The
card was positioned so that the distance between the two color patches was
about 15 degrees of visual angle. Each color patch was circular with a di-
ameter of 7 degrees of visual angle. For half the infants red was on the right
side, of the card and for the other half red was on the left side. The two
colors were calibrated to have equal luminance, so that they could not be
distinguishable by a black-and-white vision system. After parental consent
was granted, the infants were tested as follows. Once it was decided that the
infant was in an alert state, the card was presented in front of him/her and an
observer recorded, during a 30 second period how long infants looked to the
left and right side of the card. The observer did not know whether left cor-
responded to red or to the green patch. The dependent variable was the total
time in seconds looking to the red patch minus the time looking to the green
patch. The results were as follows: {−2,−1, 10, 8, 4, 2, 11, 1,−3, 4}.

(a) Formulate the null hypothesis
(b) Should the test be 1-tail or 2-tails?
(c) Do you have enough evidence to reject the null hypothesis?
(d) What is the probability that you made a type I error?
(e) What is the probability that you made a type II error?
(f) What is the type I error specification?
(g) What is the power specification?
(h) What are the assumptions needed to guarantee a 5% type I error spec-

ification?

3. You are given 3 randomly selected kittens of the same age. Their weights
are 3, 3 and 2 pounds. Your biology book says that 1 year old kittens weigh
7.0 pounds. Your goal is to prove that these kittens are not 1 year old.
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(a) What is the null hypothesis?

(b) Do you have enough evidence to say that the kittens are not 1 year old?

(c) What is the probability that you made a type I error?

(d) What is the probability that you made a type II error?

(e) What is the type I error specification?

(f) What is the power specification?

(g) What are the assumptions needed to guarantee a 5% type I error spec-
ification?

7.5 Appendix: The sample variance is an umbiased
estimate of the population variance

Let X1, . . . , Xn be i.i.d. random variables with mean µX and variance σ2
X . To

ease the presentation I will prove that E(S2
X) = σ2

X for the case in which µX = 0.
Generalizing the proof for arbitrary values of µX is mechanical once you know
the proof for µX = 0. First note if µX = 0 then

Var(Xi) = E(Xi − µX)2 = E(X2
i ) = σ2

X (7.39)

Var(X̄) = E[(X̄ − E(X̄))2] = E(X̄2) =
σ2

X

n
(7.40)

and since Xi, Xj are independent when i "= j

E(XiXj) = E(Xi)E(Xj) = 0 (7.41)

Using the definition of S2
X , and considering that X1, . . . , Xn have the same distri-

bution, we get

E(S2
X) =

1

n − 1

n∑

i=1

E(Xi − X̄)2 =
n

n − 1
E(X1 − X̄)2 (7.42)

Moreover

E(X1 − X̄)2 = E(X2
1 ) + E(X̄2) − 2E(X1X̄) = σ2

x +
σ2

X

n
− 2E(X1X̄) (7.43)
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Finally

E(X1X̄) = E(X1
1

n

n∑

i=1

Xi) (7.44)

=
1

n

(
E(X2

1 ) +
n∑

i=2

E(X1Xj)
)

=
σ2

X

n
(7.45)

Thus
E(S2

Y ) =
n

n − 1

(
σ2

X +
σ2

X

n
− 2
σ2

X

n

)
= σ2

X (7.46)

!
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Chapter 8

Intro to Experimental Design

The goal of experimentation is to study causal relationships between physical
events. Behind every scientific experiment there are individuals and indirectly en-
tire societies trying to figure out whether two or more phenomena are related (e.g.,
are lung cancer and smoking related?, does a drug improve the life-expectancy
of patients?, does an education program help economically disadvantaged stu-
dents?). Different experimenters have to tackle issues specific to their disciplines
but generally speaking empirical scientists share many deal of common problems:
1) They need to deal with the variability and uncertainty inherent in natural data,
2) They need to organize and communicate the obtained data in an efficient fash-
ion, 3) They need to make inferences based on limited samples of data, 4) They
need to design experiments carefully to leave as few possible interpretations of
the results as possible.

8.1 An example experiment
In this chapter we will discuss general concepts of experimental design. For con-
creteness, I will introduce these concepts in relation to the following experiment
which was part of J. Ridley Stroop’s [?] doctoral dissertation. Stroop was in-
trigued by the well known fact that it takes longer to name colors than to read
color names (i.e., it takes longer to say that a red patch is red than to read the
word “RED”). Theories of the time proposed explanations based on interference
effects and thus Stroop decided to study the effect of interfering color names upon
naming colors. The results, which were rather spectacular, are nowadays known
as the “Stroop effect”. To accommodate our needs I have modified Stroop’s orig-

81
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inal experiment while maintaining the overall spirit of his work. You can read his
original experiment at the 1935 issue of the Journal of Experimental Psychology
[?].

• Materials:

There were 2 lists of stimuli:

– One list of 100 stimuli each of which consisted of four capital X let-
ters “XXXX”. The color of the ink varied randomly on each stimulus.
These lists were used for the “Neutral” test condition.

– One list of 100 stimuli consisting of color names (e.g. “GREEN”) but
with each word printed with ink of color different from that of the color
named by the word. These lists were used for the “Interference” test
condition. The colors used were red, blue, green, brown, and purple.
The colors were arranged randomly while making sure that no color
would immediately follow itself. The words were printed an equal
number of times on each color (except for the color they named).

• Subjects and Procedure:

Twenty volunteer college undergraduate students (10 males and 10 females)
participated in the experiment. All participants were tested individually.
They were seated near the window so as to have good daylight illumination
from the left side. A ten-word sample of each test was read before reading
the test the first time. The instructions were to name the colors as they
appeared in regular reading line as quickly as possible and to correct all
errors. On the signal “Ready! Go!” the sheet which the subjects held
face down was turned by the participant and read aloud. The words were
followed on another sheet by the experimenter and the time was taken with
a stop watch to a fifth of a second. Within each sex category half of the
participants were randomly assigned to the Neutral condition and half to
the Interference condition.

• Results

Means and standard deviations of the time it takes to name 100 stimuli ap-
pear in Table I.
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Sex Neutral Interference
male 111.1 [21.6] 69.2 [10.8]

female 107.5 [17.3] 61 [10.5]

Table 8.1: Mean Time and Standard Deviation [in square brackets] per 100 stim-
uli. Time measured in seconds.

8.2 Independent, Dependent and Intervening Vari-
ables

By convention the variables manipulated by the experimenter are known as the
independent variables (e.g, the interference level). The different values of the in-
dependent variable are called treatment levels, or simply treatments. For exam-
ple, in Stroop’s experiment the treatments were the “Neutral” and “Interference”.
Experiments are designed to test whether the different levels of the independent
variable have an effect on another variable known as the dependent variable. In
Stroop’s experiment the dependent variable is the reaction time.

Figure 8.1: Independent and intervening variables have a potential effect on the
dependent variable.

Intervening variables are variables other than the independent variable that
have a potential effect on the dependent variable. Even though we are interested
on the relationship between the independent and the dependent variables, in prac-
tice there are many other variables that are also having an effect on the dependent
variable. For example, the temperature of the room, the age of the subject, the
particular mood of the subject at test time, may also have an effect on the depen-
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dent variable. Some experimenters emphasize the fact that they are not interested
in the effects of some intervening variables, by calling them nuisance variables.

Good experimental designs control for all possible intervening variables so
that the only systematic source of variation that can explain the results is the in-
dependent variable. If a study is poorly designed and intervening variables may
actually explain our results we say that the design lacks internal validity, or that
it has confounding variables. For example, if we choose all the subjects in the
neutral condition to be males and all the subjects in the interference condition to
be females, we would say that sex is a confounding variable. The design lacks
internal validity and we would not be able to tell whether the effects on the depen-
dent variable are due to the variable “sex” or to the treatment conditions (Neutral
vs. Interference).

The art of experimental design consists of making sure intervening variables
distribute in a “fair” fashion amongst the different treatment conditions so that
the only systematic differences between the different treatment groups can be at-
tributed to the independent variable. The concept of “fair” distribution of the
intervening variables is very tricky and we should return to it later. For now
we’ll just use the concept intuitively and say that when an intervening variable
is distributed in a “fair” fashion amongst the treatment conditions we say that the
variable has been controlled. If an intervening variable has been controlled then
it cannot be used to explain away our results. For example, if all our subjects are
females, and we still find a difference between the two neutral and the interference
conditions, clearly sex cannot explain this difference. By holding the sex of all
subjects constant we have controlled its possible effect. In scientific parlance we’d
say that sex is a controlled variable. Only when all possible intervening variables
are controlled we can proceed to analyze whether the independent variable X has
an effect on the dependent variable Y . In the next section we discuss the most
common methods of control available to scientists.

8.3 Control Methods
1. Holding constant: The idea is simple. We make sure an intervening vari-

able is held constant in all our observations. This disqualifies it as a po-
tential explanation of our results. For example if all subjects were treated
in the same room at the same temperature, it follows that temperature can-
not explain the obtained differences between treatment conditions. Holding
constant is a rather dramatic method of control but it has its problems. For
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example, if we decide to hold “sex” constant by studying only male sub-
jects, we no longer know whether the results are also applicable to female
subjects. In the lingo of experimental design, we say that holding things
constant reduces the external validity of the experiment. External validity
simply means the power to generalize our results to populations larger than
the specific set of observations obtained in the experiment (e.g., our ability
to say that the Stroop effect occurs to subjects other than the 20 subjects
investigated in our experiment).

2. Blocking: The idea in blocking methods is to basically replicate the study
with different levels of the blocked intervening variable. For example we
may “block” age by categorizing subjects into less than 15, 15-30, 30-40,
40-50, 50-60, more than 60). Then we can systematically study the exper-
imental results within each of the different blocks. An important form of
blocking is blocking by subject, which indicates that we actually block the
variable “subject identity”, thus controlling all intervening variables, known
and unknown, that make subjects different from each other. When we block
by subject, each subject is considered as a block and he/she goes through all
the treatment conditions in the experiment. The idea is to study the effect
of a treatment within each subject (e.g. study the difference between the
neutral and interference conditions on a subject by subject basis). In this
case the experiment is said to be within subjects, or repeated measures as
opposed to between subjects. Within subject designs are a bit trickier to
analyze and thus we will later dedicate them a special chapter. For now we
will concentrate on between subject designs.

3. Probabilistic Control: This is by far the most important methods of control
and it is arguably the one form of control that made rigorous experiments
in the social and biological sciences possible. The fact is that even though
we may try to control for known intervening variables, there will always be
intervening variables unknown to us that may have a potential effect on our
results. Hey, may be the position of Jupiter at the time of the experiment
has an effect on some people’s capacity to complete the Stroop task. Who
knows?

So here is the problem: How can we possibly control for intervening vari-
ables we cannot even think of? Scientists have found a very ingenious way
to solve this problem. The trick is to give up equal distribution of inter-
vening variable in specific experiments, instead what we maintain equal
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amongst the treatment conditions is the probability distribution of the vari-
able. We think of an ensemble of replications of the same experiment and
guarantee that over this entire ensemble, the intervening variables will be
distributed evenly across the different treatment conditions. When we do
that, we say that the intervening variables have been randomized.

We have actually seen control by randomization in previous methods even
though I avoided calling it by its name. For example, in control by match-
ing we first clustered subjects in attempt to distribute intervening variable
equally. But since we had differences between the subjects within each
cluster, we then randomly assigned subjects to each treatment condition.
In completely randomized designs we simply assign subjects randomly to
each condition without any previous matching.

We can think of the subject identity as an intervening variable that includes
all the peculiarities, known and unknown to us, that make each subject dif-
ferent from everybody else at test time. We then randomize the effects of
all these known and unknown variables by assigning each subject randomly
across the different experimental conditions. For example, we could put as
many cards in a hat as the number of different treatment conditions. Then
we can ask each subject in our experiment to draw a card identifying his/her
treatment condition. Note that by using probabilistic control, experiments
become a game of chance, thus the importance of probability theory and
statistics in the analysis of experiments.

Note again that randomization does not guarantee equal distribution of in-
tervening variables in single experiments, however it guarantees that on av-
erage, if we were to repeat the same experiment many many times, the inter-
vening variables will be equally distributed among the different treatment
groups. Technically speaking, when a variable is randomized, we say that it
is a random variable, a mathematical object studied in probability theory
and statistics. We will finish up this chapter with some useful concepts.

4. Matching: You can think of matching as controlled randomization. For
example, if we simply randomly assign subjects to different treatment con-
ditions, it is always possible that in specific experiments exceptional sub-
jects accumulate disproportionally in some treatment conditions. Matching
techniques try to control for these possible imbalances in the following way.
First we cluster cluster our subjects in terms of their similarity with respect
to a particular variable. Each cluster must has as many subjects as treatment
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conditions. For example, if we wanted to “match by age” in the Stroop
experiment, we would put together groups of 2 people of similar age. If
we had 4 subjects with ages 18, 49, 30, and 16, we would make a cluster
with the younger subjects (18, 16) and another cluster with the older sub-
jects (49,30). Once the clusters are formed, subjects within each cluster are
randomly assigned to different treatment groups.

5. Statistical Control: In many cases we may not be able to guarantee a uni-
form distribution of the intervening variables but we may at least try to make
some aspect of the distribution of variables be the same in all the treatment
groups. For example, it would be impossible for the room temperature to
be exactly the same all the time but at least we may want to guarantee than
on average the room temperature was the same across treatment conditions.
We may also want to make sure that the average age of the subjects is about
the same across all treatment groups. Note that equalizing averages does not
guarantee equal distributions. For example, treatment group 1 could have
50 % 5 year old subjects and 50% 35 year old subjects. Group 2 could have
just 20 year old subjects. Both groups have the same average age but obvi-
ously the distribution is completely different. Although this form of control
is rather weak, in some cases it may be all we can do. In such cases we
report in a crystal clear way our method of control and leave it it is up to the
scientific community to decide on the validity of our results.

8.4 Useful Concepts
1. Experiments vs. Observational studies:

Scientific studies are commonly classified into observational and experi-
mental depending on whether the independent variable is observational or
experimental. An independent variable is Experimental if its value is as-
signed by the experimenter to the subjects.1 For example if experimenters
assign different subjects different dosages of a drug then the drug’s dose is
an experimental variable. The crucial point here is that the experimenter,
not the subjects, decides which treatment each subject will receive.

1Note that being “experimental” is a property of the independent variable, not a property of the
dependent variable. If you want to know whether a study is experimental you need to focus on the
independent variable; do not worry about the dependent variable.
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If an independent variable is not experimental then it is called observa-
tional. For example, age does not qualify as an experimental variable since
age cannot be assigned to subjects. All experimenters can do is to classify
subjects according to their age.

The goal of experimental independent variables is to study cause and effect
relationships (e.g., to establish whether a drug is or is not a beneficial to treat
a particular sickness). Observational variables on the other hand can only
be used to study relationships, without establishing causes and effects. For
example, early observational studies about the relationship between smok-
ing and cancer showed that smokers tended to have a higher cancer rate than
non-smokers. The dependent variable was whether the subject had cancer.
The independent variable was whether the person smoked. Note in this case
the independent variable is observational, since it would be unethical for ex-
perimenters to force a group of subject to smoke. The experimenters could
only classify subjects into smokers or non-smokers. Unfortunately, the re-
sults of observational studies like this were inconclusive since they could be
due to an intervening variable that is systematically different between the
two groups. For example highly stressed subjects could have a propensity
to smoke and a higher cancer risk. According to this view, stress, and not
smoking per se, could cause cancer. It could also be the case that subjects
with cancer have a higher propensity to smoke just because cancer stresses
you out. According to this view it is cancer that causes smoking!

A classic example of observational studies involves the analysis of differ-
ences between men and women on some dependent variable of interest.
Note that since these these studies are observational. We can investigate
whether men and women are different on some dependent variable (e.g.,
memory, IQ, or income) but we cannot assess what the causes are for the
obtained differences. These causes could be due to trivial variables, such as
the fact that on average men tend to be heavier, or they could be due to com-
plex socio-political variables (e.g., the underlying cause for the observed
differences could be that the educational system treats men and women dif-
ferently causing).

2. Exploratory vs. Confirmatory Studies: The distinction between these
two different types of research is somewhat subtle, yet important. Confir-
matory studies tend to have only a small and well defined set of treatments
and behaviors under study. Clear a-priori hypotheses are made about what
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to expect in the data and only those a-priori hypothesis are tested. For ex-
ample, a confirmatory study may investigate whether taking an aspirin a day
reduces the chances of heart attack. In exploratory studies the experimenters
may have a general idea about what to expect in the data but they are willing
to analyze the data in a very wide variety of ways with the hope of finding
potentially interesting results. Exploratory studies are extremely important
in science and they are the source in many cases of new unexpected results.
However, the results in exploratory studies tend to be inconclusive basically
because by analyzing the data in many different ways it is always possible
to find some sort of pattern that may just be due to chance. You can see
this effect in sports analysis when all sorts of different statistics are used
to explain after the fact why a team has lost or won. In general, results
of exploratory analysis are treated with caution and attempts are made to
replicate these results with well defined confirmatory experiments.

3. Random Assignment vs. Random Selection: This is a very important
distinction that novices sometimes confuse. Random selection refers to
the process of selecting a sample from a population of subjects. In many
experiments this selection does not need to be random. For example, in
psychophysical experiments may times the experimenter himself and his
colleagues are the subjects of the study, and thus they are not “randomly
selected”. However these non-randomly selected subjects may still be ran-
domly assigned to the different treatment conditions. Random selection has
an effect on the external validity of the experiment, our power to generalize
to a larger population. Random assignment has an effect on the internal va-
lidity of the experiment, our power to infer that the independent variable is
the one causing the observed results.

8.5 Exercises
1. The following questions refer to the experiment outlined at the beginning of

this chapter:

(a) What are the independent and dependent variables?
(b) Find intervening variables that where held constant, matched and ran-

domized.
(c) Is the experiment experimental or observational? Explain why.
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(d) Is the experiment within subjects or within subjects?

2. Design a between subject experiment to test whether bees can distinguish
red from green.

3. Design a between subject experiment to test whether human newborns can
tell the difference between male and female faces.

4. Design an experiment to test whether caffeine has an effect on the subjective
feeling of Nervousness. Make sure you specify the following:

(a) Independent variable and its implementation in the different treatment
groups.

(b) Dependent variable and how you are going to measure it.
(c) Intervening variables and how you will control them.

5. Consider the following hypothetical experiment inspired on research by
Baker and Theologus [?] on the effects of caffeine on visual monitoring.
The purpose of the was to asses the effect of caffeine on a visual monitor-
ing task that simulated automobile night driving. Subjects sat in a semi-
darkened room approximately 12 oft from a visual display that consisted of
two 1-inch red lights spaced 6 in. apart. At random intervals ranging from
1.5 to 3.5 min., the red lights were driven apart at a rate of 12.56 in/min
for 30 seconds. The geometry of the viewing condition corresponded to a
driving situation in which one vehicle followed 60 yd. behind a lead ve-
hicle at night driving. The speed at which the lights separated simulated
what would be perceived if the lead vehicle reduced its velocity by 0.92
mph. Subjects had to continuously monitor the two red-lights and press a
button whenever they detected any separation of the two lights. The reac-
tion time, from the beginning of the light separation to the initiation of the
subject;s response was automatically recorded. Testing was conducted over
a 4-hr period with 20 trials being administered each hour. for a total of 80
responses per subject. During the 4 hour testing period an FM radio tuned
to a local station was played to avoid excessive sensory deprivation. There
were 10 paid male volunteers drawn from universities in the Washington
DC area. Average age was 29.91 yrs. Subjects were matched by age (e.g.
divided into 5 couples with no more than a year difference). Each member
of the age-matched couple was randomly assigned to a different treatment
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group. There were two such treatment groups: 1) A control group of sub-
jects given placebo tablets just before testing began and 2 hours before the
end of testing. 2) An experimental group of subjects that were given a tablet
with 200 mg. of caffeine just before testing began, and another tablet with
200 mg. of caffeine 2 hours before the end of testing. Drug and placebo
tablet administration was conducted according to a double-blind paradigm,
with tablets placed in coded envelopes in a manner unknown to the subjects
and test administrators.

(a) What are the independent and dependent variables?
(b) Find intervening variables that where held constant, matched and ran-

domized.
(c) Is the study experimental or observational? Explain why.
(d) Is the study within subjects or within subjects?

6. What is the difference between external and internal validity?

7. A friend of yours observes that swimmers nicer bodies than other athletes.
She concludes that swimming helps have a good body. What’s wrong with
this conclusion? Design an experiment to test your friend’s hypothesis.

8. Read the Abstract, Introduction and Methods sections of the article in Ref-
erence [?]. Describe the control methods used in the study.
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Chapter 9

Experiments with 2 groups

In this chapter we learn how to apply the T test to experiments with 2 groups. For
example one group may receive a drug and another group may receive a placebo.
The form of the test depends on whether the experiment is performed with dif-
ferent subjects in each group or whether the same subjects are used for the two
groups. The first type of experiment is called between subjects or randomized.
The second is called within subjects or repeated measures.

9.1 Between Subjects Experiments

In this case we have two sets of random variables. The first set describes measure-
ments in a group of subjects, the second set describes measurements in a different
group of subjects. The number of subjects per group is the same, and we will
represent it with the letter n. Thus, the total number of subjects in the experi-
ment is 2n. Let X1,1, . . . , X1,n represent the measurements for the first group and
X2,1, . . . , X2,n represent the measurements for the second group. Let X̄1 repre-
sent the average of the observations in the first group and X̄2 the average of the

93
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observations in group 2. We thus have

X̄1 =
1

n

n∑

i=1

X1,i (9.1)

X̄2 =
1

n

n∑

i=1

X2,i (9.2)

S2
1 =

1

n − 1

n∑

i=1

(X1,i − X̄1)
2 (9.3)

S2
X̄1

=
1

n
S2

1 (9.4)

S2
2 =

1

n − 1

n∑

i=1

(X2,i − X̄2)
2 (9.5)

S2
X̄2

=
1

n
S2

2 (9.6)

The null hypothesis specifies the expected value of the difference between the
sample means of the two groups, i.e, E(X̄2 − X̄1 | Hn true). In most experiments
the null hypothesis says, that this expected value is zero, i.e., that on average the
two groups are no different. The variable of interest in this case is X̄2 − X̄1.
We assume that the random variables X1,1, . . . , X1,n and the random variables
X2,1, . . . , X2,n are independent and Gaussian. Moreover we assume that within
each group all the random variables have the same expected value

E(X1,1) = E(X1,2) = · · · = E(X1,n) (9.7)
E(X2,1) = E(Y2,2) = · · · = E(Y2,n) (9.8)

(9.9)

and that all the random variables have the same variance

Var(X1,1) = · · · = Var(X1,n) = Var(X2,1) = · · · = Var(X2,n) = σ2
X (9.10)

where we do not the value of σ2
X . Note in single group experiments the variable of

interest is the sample mean for that group and we use an estimate of the standard
deviation of the sample mean. In two group experiments the random variable of
interest is X̄2 − X̄1, i.e, the difference between two group means, and thus we
need to come up with an estimate of the standard deviation of (X̄2 − X̄1). Note
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that since X̄1 and X̄2 are independent ravs

Var(X̄2 − X̄1) = Var(X̄2) + Var(−X̄1) = Var(X̄2) + Var(X̄1) (9.11)

= 2Var(X̄1) =
2

n
Var(X1,1) (9.12)

The last two steps are valid because we assume Var(X1,1) = · · · = Var(X2,n).
Thus Var(X̄1) = Var(X̄2). We can get an umbiased estimate of the variance of
the observations by averaging S2

1 and S2
2 . We represent this pooled estimate as S2

S2 =
1

2
(S2

1 + S2
2) (9.13)

An unbiased estimate of the variance of the difference between sample means is
as follows

S2
X̄1−X̄2

=
2

n
S2 = S2

X̄2
+ S2

X̄1
(9.14)

and the T random variable is defined as follows

T =
X̄2 − X̄1 − E(X̄2 − X̄1 | Hntrue)

SX̄2−X̄1

=
X̄2 − X̄1 − E(X̄2 − X̄1 | Hntrue)√

S2
X̄2

+ S2
X̄1

(9.15)
In this case the number of degrees of freedom is 2(n − 1) since SX̄2−X̄1

is based
on 2(n − 1) independent observations, i.e., n − 1 independent observations in S 2

1

and n − 1 independent observations in S2
2 .

If Hn is true and the assumptions are met, then T follows the distribution
described by Gosset, which is available in tables. The procedure to do one tailed
and two tailed tests is identical as for one group experiments provided the new
formulas for T and for df are used.

Example A group of 6 migrane patients was gathered and randomly assigned
to one of two conditions. In the experimental group subject were given 500 mg of
a new migrane drug whenever they had a migrane access. In the control group
subjects were given two aspirins. One hour after the access, subjects were asked
to rank from 0 to 100 how bad the headache was. 0 meaning, “headache? what
headache?”, and 100 meaning “I cant take it anymore”. The results were as
follows
Experimental Group =[10, 30, 20]
Control Group = [56, 64, 60]
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First of all we compute the values taken by the relevant random variables in our
experiment

X̄1 = (10 + 30 + 20)/3 = 20 (9.16)
X̄2 = (56 + 64 + 60)/3 = 60 (9.17)

S2
1 = ((10 − 20)2 + (30 − 20)2 + (20 − 20)2)/2 = 100 (9.18)

S2
2 = ((56 − 60)2 + (64 − 60)2 + (60 − 60)2)/2 = 16 (9.19)

SX̄1−X̄2
=

√
100/3 + 16/3 = 6.21 (9.20)

In our case it makes sense to use a one tailed test, since we are trying to reject the
hypothesis that the aspirin works better or equal to the new drug. Thus the null
hypothesis tells us that E(X̄2 − X̄1 | Hn true) ≤ 0. The extreme case, i.e., what
we call Hx says E(X̄1 − X̄2 | Hx true) = 0. Thus,

T =
X̄2 − X̄1 − E(X̄2 − X̄1 | Hx true)

SX̄2−X̄1

=
(60 − 40) − 0

6.21
= 3.22 (9.21)

The number of degrees of freedom is (2)(3−1) = 4. We go to tables and find that
for 4 degrees of freedom P (T > 2.13 |Hx true) = 0.05. Thus the critical value is
2.13. Since the value taken by T is larger than 2.13 we have enough evidence to
reject the null hypothesis. We can say that the new drug works better than aspirin.

9.1.1 Within Subjects Experiments
In the previous experiments we assumed all the measurements were independent.
In within subjects experiments this assumption is clearly incorrect: if we test the
same subjects in the two groups, then the random variables in the first group will
be related to the random variables in the second group. This type of experiments
are called “repeated measurements” or within subjects. In this case we work with
the differences between the observations obtained in the two groups on a subject
by subject basis

Dj = X2,j − X1,j (9.22)

and the sample average of the difference would be

D =
1

n

n∑

j=1

Dj = X̄2 − X̄1 (9.23)
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In most cases the null hypothesis says that there is no differences in the expected
values of the two groups, i.e., E(D̄ |Hn true) = 0. The T random variable follows

T =
D̄ − E(D̄ | Hn true)

SD̄

(9.24)

This effectively transforms a 2 group experiment into a single group experiment
that can be analyzed with the techniques we saw in the previous chapter.

Example Three undergraduate students from UCSD volunteered to participate
on an experiment to test the effect of caffeine on reaction time. Each student
was tested in two different conditions with the tests being separated in time by
one week. In one condition the subjects drunk a double espresso. In the other
conditions the subjects drunk a double decaffeinated espresso. The order of the
two conditions was randomly assigned. On each condition, the subjects were
tested 15 minutes after drinking the espresso. Subjects were tested on a task that
required rapid reaction to a stimulus. The average reaction time in milliseconds
of each subject was recorded. The results were as follows
Caffeine Condition =[10, 30, 20]
Decaf Condition = [56, 64, 60]
The first number on each condition corresponds to the first subject, second num-
ber to second subject and third number to the third subject. Is the difference in
reaction time between the two conditions statistically significant?

This is a repeated measures experiment so the T-test would be based on the
difference measurements obtained for each of the three subjects.

D1 = 10 − 56 = −46 (9.25)
D2 = 30 − 64 = −34 (9.26)
D3 = 20 − 60 = −40 (9.27)

D̄ = (−46 − 34 − 40)/3 = −40 (9.28)

S2
D =

1

2
((62) + (62) + 02) = 18 (9.29)

S2
D̄ = 18/3 = 6 (9.30)

T =
18 − 0√

6
= 7.35 (9.31)

df = (3 − 1)8 = 2 (9.32)
P (T | Hx > 2.91 True) = 1/20 Obtained using T-tables (9.33)
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Thus the critical value is 2.91. Since 7.35 is larger than 2.91. The difference in
reaction time between the two groups is statistically significant.

9.2 Exercises
1. A San Diego based biotek company is testing whether a new drug has a good

effect on amnesia, the inability to remember recently presented materials.
The sample consisted of 8 amnesic patients that volunteered to participate
in the experiment. The subjects were randomly assigned to either the exper-
imental group (drug) or the control group (placebo). Subjects were treated
with 125 mg a day of the drug or the placebo for 30 days. After one month
subjects were given a list of 100 training pictures one at a time at 2 second
intervals. Half an hour later subjects were presented 200 new pictures: the
100 training pictures plus 100 new ones. Subjects were asked to discrim-
inate whether the pictures were old or new. The dependent variable was
the percentage of correctly discriminated pictures. The results in the exper-
imental group were as follows:{61, 60, 59, 60}. The results in the control
group were as follows: {50, 51, 50, 49}.

(a) Is the experiment randomized or within subjects?
(b) Specify the null hypothesis if you were to use a two tailed test.
(c) Do you have enough evidence to reject this null hypothesis?
(d) Specify the null hypothesis if you were to use a one tailed test.
(e) Do you have enough evidence to reject this null hypothesis?
(f) What assumptions did you make?
(g) A replication of the same experiment with a different random sample

of subjects results in a control group mean of 10 instead of 50? Do
you find this surprising? Justify your response.

(h) Repeat the analysis assuming the same subjects are used in both groups.
For example, Subject 1 gets a score of 61 when he/she takes a drug and
a score of 50 when he/she takes the placebo.



Chapter 10

Factorial Experiments

NOTE FROM JAVIER R. Movellan: This chapter may be particularly buggy. Use
at your own risk.

10.1 Experiments with more than 2 groups
In this chapter we will apply the T-test to experiments that involve more than two
treatment groups. The basic ideas are the same as in single group and two group
experiments. The only difference is that we use information from all the groups
to get better estimates of the variance. The experimental design we will address is
called “between subjects” indicating that each of the treatment groups is made of
different randomly assigned subjects.

Suppose we want to study the joint effects of caffeine and alcohol on the time it
takes people to respond to a red light. Eight volunteer students from the Cognitive
Science Department at UCSD were randomly assigned to one of four treatment
groups: Group 1) Each subject in this group has a non-alcoholic beer and a decaf-
feinated coffee. Group 2) Each subject in this group has an alcoholic beer and a
decaffeinated coffee. Group 3) Each subject in this group has a non-alcoholic beer
and a regular coffee. Group 4) Each subject in this group has an alcoholic beer
and a regular coffee. Each of the 8 subjects in our sample was measured in terms
of the times it took them to do a test that involved pushing a pedal in response to
a red light. Table 11 shows the results of the experiment

Suppose we want to know whether alcohol has an effect on people that take
regular coffee. In this cases the null hypothesis would be that the alcohol has no
effect, i.e.,
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E(X̄4 − X̄3 | Hn true) = 0 (10.1)

where X̄i represents the sample mean of group i in the experiment. We could test
this hypothesis restricting our analysis to groups 3 and 4. This would simply be a
two group experiment that we already know how to analyze. However there is a
better way to do things. The idea is to use a pooled estimate of the variance based
on the 4 groups, instead of just two groups. The advantage of such an estimate is
that it is based on more observations. If our experiment has a different groups, the
pooled estimate would be

S2 =
1

a
(S2

1 + S2
2 + S2

3 + · · ·+ S2
a) (10.2)

and it would have (a)(n − 1) degrees of freedom. We know

Var(X̄4 − X̄3) = 2Var(X̄1) =
2

n
Var(X1,1) (10.3)

thus our estimate of this variance will be

S2
X̄4−X̄3

=
2

n
S2 (10.4)

and the T random variable would be

T =
X̄4 − X̄3√
(2/n)S2

(10.5)

Table 10.1:
NoAlcohol Alcohol

NoCaffeine 3 1 7 5
Caffeine 1 1 10 16
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In our example

X̄1 = 2 (10.6)
X̄2 = 6 (10.7)
X̄3 = 1 (10.8)
X̄4 = 13 (10.9)

S2
1 =

1

2 − 1
((3 − 1)2 + (1 − 1)2) = 2 (10.10)

S2
2 =

1

2 − 1
((7 − 6)2 + (5 − 6)2) = 2 (10.11)

S2
3 =

1

2 − 1
((1 − 1)2 + (1 − 1)2) = 0 (10.12)

S2
4 =

1

2 − 1
((10 − 13)2 + (13 − 16)2) = 18 (10.13)

S2 =
1

4
(2 + 2 + 0 + 18) =

11

2
(10.14)

T =
13 − 1 − 0√

2
2

11
2

= 5.11 (10.15)

df = 4; (10.16)

we see in tables that
P (T > 2.77 | Hn true) = 1/20 (10.17)

10.2 Interaction Effects
In many cases it is important to know whether the effect of a treatment changes
when administered in combination with other treatments. For example in many
cases we need to know whether a drug has the same effect when combined with
other drugs. This concept is so important that statisticians gave it a special name:
“interaction effects”. In general, if the effect of a treatment changes when com-
bined with other treatments, we say that the treatments interact, or that the ef-
fects are non-additive. Otherwise we say that the treatments are additive, or
that there is no interactions.

The simplest experimental design that allows to study whether treatments in-
teract consists of 4 groups formed by the combination of two treatments of one
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factor (e.g., caffeine versus no caffeine) and two treatments of another factor (e.g.,
alcohol versus no alcohol). This type of design is called a 2 × 2 factorial design.

Now we need to translate the concept of interaction into a specific testable
hypothesis. Let’s take the example experiment we have analyzed so far. If there
is no interaction between alcohol and caffeine, then the effect of alcohol should
be the same regardless of whether a person takes regular or decaffeinated coffee.
We measure the effect of alcohol when combined with decaffeinated coffee as
E(X̄2 − X̄1) and the effect of alcohol when combined with regular coffee as
E(X̄4 − X̄3). Thus, if there is no interactions, these two effects have to be the
same. In other words, The null hypothesis of no interaction effects says that

E[(X̄2 − X̄1) − (X̄4 − X̄3) | Hn true] = 0 (10.18)

or equivalently
E[X̄2 + X̄3 − X̄1 − X̄4 | Hn true] = 0 (10.19)

So the random variable of interest is X̄2 + X̄3 − X̄1 − X̄4. Since we know that

Var(X̄2 + X̄3 − X̄1 − X̄4) = 4Var(X̄1) =
4

n
Var(X1,1) (10.20)

then our estimate of the standard deviation of X̄2 + X̄3) − X̄1 − X̄4 is

S2
X̄2+X̄3−X̄1−X̄4

=
4

n
S2 (10.21)

and it has (a)(n − 1) degrees of freedom. The T random variable follows

T =
X̄2 + X̄3 − X̄1 − X̄4 − E(X̄1 − X̄4 | Hn true)

SX̄2−X̄3−X̄1−X̄4

(10.22)

In our example,

T =
6 + 1 − 2 − 13√

(4/2)(11/2)
= 2.41 (10.23)

2df = (4)(2 − 1) = 4 (10.24)

For 4 df the critical value is 2.71 and thus we do not have enough evidence to
reject the null hypothesis. We cannot say that alcohol and caffeine interact.



Chapter 11

Confidence Intervals

NOTE FROM JAVIER: This chapter has not been properly debugged. Use at your
own risk.

In this chapter we study a method to bracket expected values based on sample
information. We may want to bracket expected values of the mean of a group
, or the difference between sample means of two groups, or the difference of the
difference between sample means of 4 groups (we’d do so to analyze interactions).
In all cases the basic ideas are the same. While hypothesis testing and interval
estimation are closely related, the later method is in general more informative for
the following two reasons: 1) Classical hypothesis testing does not tell us the
probability that our decisions be correct. Classical interval estimation does tell us
about this. 2) Classical interval estimation methods are easier to relate to Bayesian
methods so they provide a better foundation for a way of analyzing experiments
consistent with classical and Bayesian approaches.

We will see an example of interval estimation using the data from an experi-
ment we used in a previous chapter. Here is a re cap of the experiment at hand:

Suppose we want to study the joint effects of caffeine and alcohol on the time it
takes people to respond to a red light. Eight volunteer students from the Cognitive
Science Department at UCSD were randomly assigned to one of four treatment
groups: Group 1) Each subject in this group has a non-alcoholic beer and a de-
caffeinated coffee. Group 2) Each subject in this group has an alcoholic beer and
a decaffeinated coffee. Group 3) Each subject in this group has a non-alcoholic
beer and a regular coffee. Group 4) Each subject in this group has an alcoholic
beer and a regular coffee. Each of the 8 subjects in our sample was measured
in terms of the times it took them to do a test that involved pushing a pedal in
response to a red light. Table 11 shows the results of the experiment
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Suppose we are interested in bracketing the value of E(X̄3). To do so consider
the following T random variable

T =
X̄3 − E(X̄3)

SX̄3

(11.1)

Note that now we do not condition on the null hypothesis being true. We simply
treat E(X̄3) as a fixed, yet unknown number. Thus, since we are using the correct
expected value, T will follow Gosset’s t-distribution. In previous chapters we saw
that for this particular experiment,

X̄3 = 1 (11.2)
S2 = 11/2 (11.3)

df = 4 (11.4)
c = 2.77 (11.5)

where c was obtained using T-tables so that P (T ≥ c) = 1/40. Moreover. since
X̄3 is based on two observations

SX̄3
=

√
S2/2 =

√
(1/2)(11/2) = 1.65 (11.6)

Now notice the following,

P (−c ≤ T ≤ c) = 0.95 (11.7)

= P (−c ≤ X̄3 − E(X̄3)

SX̄3

≤ c) (11.8)

= P (−cSX̄3
≤ X̄3 − E(X̄3) ≤ cSX̄3

) (11.9)
= P (−X̄3 − cSX̄3

≤ −E(X̄3) ≤ −X̄3 + cSX̄3
) (11.10)

= P (X̄3 + cSX̄3
≥ E(X̄3) ≥ cX̄3 − cSX̄3

) (11.11)
(11.12)

Table 11.1:
NoAlcohol Alcohol

NoCaffeine 3 1 7 5
Caffeine 1 1 10 16
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Now lets define the random variables L and U to represent the upper and lower
limits of our intervals,

L = X̄3 − cSX̄3
(11.13)

U = X̄3 + cSX̄3
(11.14)
(11.15)

We have learned that
P (E(X̄3) ∈ [L, U ]) = 0.95 (11.16)

In other words, there is a 95 % chance that the random interval [L, U ], will cover
the true value of E(X̄3). Note that the interval [L, U ] is random, i.e., it changes
with the outcome of the experiment, and E(X̄3) is not random, i.e., it is a fixed
yet unknown number.

Example In our experiment,

L = X̄3 − cSX̄3
= 1 − (2.77)(1.65) = 3.57 (11.17)

U = X̄3 − cSX̄3
= 1 + (2.77)(1.65) = 5.57 (11.18)

In our particular experiment, the confidence interval for E(X̄3), the expected
value of the mean of the third group, is [3.57, 5.57] we do not know whether
in this particular experiment the confidence interval brackets the expected value,
however we know that in 19/20 experiments, the procedure we used will be cor-
rect.
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Appendix A

Useful Mathematical Facts

1. Symbols

(a) " “Is defined as”
(b) n! “n-factorial”

n! =

{
1 if n = 0

(1)(2)(3) · · · (n) if n "= 0
(A.1)

(c) Sterling’s approximation

n! ≈
√

2πn(
n

e
)n (A.2)

(d) e = 2.718281828 · · · , the natural number
(e) ln(x) = loge(x) The natural logarithm
(f) 1A The indicator (or characteristic) function of the set A. It tells us

whether or not an element belongs to a set. It is defined as follows,
1A : Ω → {0, 1}.

1A(ω) =

{
1 for all ω ∈ A ∩ Ω

0 for all ω ∈ Ac ∩ Ω
(A.3)

Another common symbol for the indicator function of the set A is ξA

2. The Greek alphabet
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A α alpha I ι iota P ρ rho
B β beta K κ kappa Σ σ sigma
Γ γ gamma Λ λ lambda T τ tau
∆ δ delta M µ mu Υ υ upsilon
E ε epsilon N ν nu Φ φ phi
Z ζ zeta Ξ ξ xi X χ chi
H η eta O o omicron Ψ ψ psi
Θ θ theta Π π pi Ω ω omega

3. Series

1 + 2 + 3 + · · ·+ n =
(n)(n + 1)

2
(A.4)

a0 + a1 + a2 + · · · + an−1 =
1 − an

1 − a
(A.5)

1 + a + a2 + · · · =
1

1 − a
, for|a| < 1 (A.6)

a + 2a2 + 3a3 + · · · =
a

(1 − a)2
, for0 < a < 1 (A.7)

ex =
∞∑

n=0

xn

n!
(A.8)

cos(x) = 1 − x2

2!
+

x4

4!
− x6

6!
+ · · · (A.9)

sin(x) = x − x3

3!
+

x5

5!
− x7

7!
+ · · · (A.10)

ejx = cos(x) + j sin(x) where j"
√
−1 (A.11)
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4. Binomial Theorem

(a + b)n =
n∑

m=0

(
n

m

)
an−m bm (A.12)

where (
n

m

)
" n!

(m!) (n − m)!
(A.13)

Note from the binomial theorem it follows that

2n =

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
(A.14)

5. Exponentials

a0 = 1 (A.15)

am+n = am an (A.16)

a−n =
1

an
(A.17)

(ab)n = anbn (A.18)

6. Logarithms

a(loga(x)) = x (A.19)

loga(x y) = loga(x) + loga(y) (A.20)

loga(x
y) = y loga(x) (A.21)

loga(1) = 0 (A.22)
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loga(a) = 1 (A.23)

loga(x) = (logb(x))/ logb(a) (A.24)

7. Quadratic formula
The roots of the equation ax2 + bx + c = 0 are

x =
−b ±

√
b2 − 4ac

2a
(A.25)

8. Factorizations

a2 − b2 = (a − b)(a + b) (A.26)

9. Trigonometry

tan(α) =
sin(α)

cos(α)
(A.27)

sin2(α) + cos2(α) = 1 (A.28)

sin(α + β) = sin(α) cos(β) + cos(α) sin(β) (A.29)

cos(α + β) = cos(α) cos(β) − sin(α) sin(β) (A.30)

tan(α + β) =
tan(x) + tan(y)

1 + tan(x) tan(y)
(A.31)

10. Hyperbolics

sinh(x) =
ex − e−x

2
(A.32)

cosh(x) =
ex + e−x

2
(A.33)
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tanh(x) =
sinh(x)

cosh(x)
(A.34)

11. Complex Numbers
We use the convention j"

√
−1. There are three ways to represent a com-

plex number

(a) Cartesian representation

x = (xr, xi) = xr + jxi (A.35)

where xr and xi are the real and imaginary components of x.

(b) Polar representation:

|x|"
√

x2
r + x2

i (A.36)

is called the magnitude of x.

∠x"arc tan
xi

xr
(A.37)

is called the phase of x.

(c) Exponential representation

x = |x|ej∠x = |x|(cos(∠x), sin(∠x)) (A.38)

Operation on complex numbers:

(a) Addition/Substraction:

(xr, xi) + (yr, yi) = (xr + yr, xi + yi) (A.39)

(b) Multiplication

|(xy)| = |x||y| (A.40)

∠(xy) = ∠x + ∠y (A.41)
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(c) Conjugation
The complex conjuage of x = (xr, xi) is x̃ = (xr,−xi). Note |x| =
|x̃| and ∠(x̃) = −∠(x).

(d) Inner Product
Let x = (x1, · · · , xn) and y = (y1, . . . , yn) be complex vectors (i.e.,
each component of x and of y is a complex number). The inner prouct
of x and y is defined as follows

< x, y >= x · y =
n∑

i=1

xiỹi (A.42)

12. Derivatives
Let y = f(x)

dy

dx
= lim

∆x→0
(f(x + ∆x) − f(x))/∆x (A.43)

Here are some alternative representations of the derivative

f ′(x) = y′ =
dy

dx
=

d

dx
y =

df(x)

dx
=

d

dx
f(x) =

df(u)

du
|u=x (A.44)

• Exponential:
d

dx
exp(x) = exp(x) (A.45)

• Polynomial:
d

dx
xm = mxm−1 (A.46)

• Logarithm
d

dx
ln x =

1

x
(A.47)

• Sine
d

dx
sin x = cos x (A.48)

• Cosine

d

dx
cos x = − sinx (A.49)
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• Linear combinations

d

dx
((a)f(x) + (b)g(x)) = (a)

d

dx
f(x) + (b)

d

dx
g(x) (A.50)

• Products
df(x)g(x)

dx
= f(x)

dg(x)

dx
+ g(x)

df(x)

dx
(A.51)

• Chain Rule
Let y = f(x) and z = g(y)

dy

dx
=

dz

dy

dy

dx
(A.52)

You can think of the chain rule in the following way: x changes y
which changes z. How much z changes when x changes is the product
of how much y changes when x changes times how much z changes
when y changes. Here is a simple example that uses the chain rule

d exp(ax)

dx
=

d exp(ax)

dax

ax

dx
= exp(ax)(a) (A.53)

13. Indefinite Integrals
The indefinite integral of the function f is a function whose derivative is
f (i.e., the antiderivative of is f ). This function is unique up to addition of
arbitrary constant. The expression

∫
f(x)dx = F (x) + C (A.54)

means that F ′(x) = f(x). The C reminds us that the derivative of F (x)
plus any arbitrary constant is also f(x).

• Linear Combinations
∫

af(x) + bg(x)dx = a

∫
f(x)dx + b

∫
g(x)dx (A.55)

• Polynomials
∫

xmdx =
xm+1

m + 1
+ C (A.56)
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• Exponentials
∫

exp(x)dx = exp(x) + C (A.57)

• Logarithms
∫

1

x
dx = ln(x) + C (A.58)

• Integration by parts
∫

f(x)g′(x)dx = f(x)g(x) −
∫

f ′(x)g(x)dx (A.59)

The formula for integration by parts easily follows from the formula
for the derivative of the product of f(x)g(x).

History
• The first version of this document was written by Javier R. Movellan in

1994. The document was 6 pages long.

• The document was made open source under the GNU Free Documentation
License Version 1.1 on August 9 2002, as part of the Kolmogorov project.



Appendix B

Set Theory

Intuitively we think of sets as collections of elements. The crucial part of this
intuitive concept is that we are willing to treat sets as entities distinguishable from
their elements. Sometimes we identify sets by enumeration of their elements. For
example, we may talk about the set whose elements are the numbers 1, 2 and 3.
In mathematics such sets are commonly represented by embracing the elements
of the set using curly brackets. For example, the set {1, 2, 3} is the set whose
elements are the numbers 1, 2 and 3. Sometimes sets are defined using some
property that identifies their elements. In such case it is customary to represent
the sets using the following formula

{x : x has a particular property} (B.1)

For example, the set {1, 2, 3} can be represented as

{x : x is a natural number smaller than 4}. (B.2)

The intuitive concept of sets as collections of elements is useful but it can only
take us so far. You may complain that we have not really defined what a set is
since we have not defined collections and we have not specified what qualifies as
an element. We have not specified either what qualifies as a property. Consider
for example the proposition {x : x is not an element of x}, i.e., the set of sets
which are not elements of themselves. We can prove by contradiction that such
a set does not exist. Let’s assume that this set exists and lets represent it with
the symbol y. If y is an element of y then, since all the elements of y are not an
element of themselves it follows that y is not an element of y. Moreover, if y is
not an element of y then, y must be an element of y. In other words, if we assume
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the set y exists we get a contradiction. Therefore we have to conclude that y does
not exist. Using similar reasoning one can also show that the set of all sets does
not exist either (see proof later in this document). But this raises deep questions:

1. What does it mean to say that a set exists or does not exist? For example
Leopold Kronecker, a German mathematician born in 1823, claimed that
the only numbers that assuredly exist are the natural numbers (1,2,3 ...).
According to him the set of real numbers are just a fantasy that does not
exist. But think about it, what criteria, other than authority, can we use to
decide whether the natural numbers or the real numbers exist?

2. How can we tell whether something is or is not a set?

3. What are valid elements of a set?

Axiomatic set theory was developed to provide answers to such questions. In
axiomatic set theory:

1. A set exists if the proposition that asserts its existence is logically true.
Moreover within this theory there are only sets so if a formal object is not a
set, it does not exist.

2. If the assumption that an object exists leads to a contradiction we can assert
that that object does not exist, or equivalently, that it is not a set.

3. There are no atomic elements: An object exists if and only if it is a set. Of
course sets can have elements but those elements must be sets themselves
otherwise they would not exist.

One “annoying” aspect of axiomatic set theory is that sets become a logical
abstraction detached from our everyday experience with collections of physical
objects. You should think of mathematical sets as logical “objects” which are part
of a formal structure. Within this theory to say that an object exists is the same as
saying that it is a set. To say that an object does not exist is the same as saying that
it is not a set. Everyday collection of physical objects are no longer sets in this
theory and thus they do not exist. While this approach may strike you as peculiar,
it turns out to be extremely powerful and in fact it has become the foundation
of mathematics. The formal structure of set theory while independent from the
physical world provides very useful tools to model the world itself. The key is to
develop set structures constrained in ways that mirror essential properties of the
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physical world. For example, the properties of the set of natural numbers (i.e.,
1,2,3, . . .) mirrors our experience counting collections of physical objects.

Axiomatic set theory is a first order logical structure. First order logic works
with propositions, i.e., logical statements constructed according to the rules of
logic and that can take two values. For convenience we call these two values
“True” and “False”. Set theory, and thus the entire body of mathematics reduces
to logical propositions that use the following elements:

1. Variables (e.g., a, b, . . . x, y, z) which stand for sets.

2. The predicate ∈, which stands for element inclusion. For example, if the
proposition (x ∈ y) takes the value true, we know that both x and y are sets
and that x is an element of y. For example, the proposition

{1, 2, 3} ∈ {{1, 2}, {4, 5}, {1, 2, 3}} (B.3)

takes the value “True”.

3. Logical operators

(a) ¬P , where ¬ is the logical “negation” operator.
(b) P ∧ P , where ∧ is the logical “and” operator.
(c) P ∨ P , where ∨ is the logical “or” operator.
(d) P → P , where → is the logical “implication” operator.
(e) P↔P , where ↔ is the logical “bijection” operator.
(f) ∀xP is the logical “for-all” quantifier.
(g) ∃xP is the logical “exists” quantifier.

The names of the different operators (i.e., “negation”, “and”, “or”, “implication”
...) are selected for convenience. We could have given them completely different
names, all we really need to know is how they operate on propositions.

All propositions in set theory are built out of atomic propositions of the form
(x ∈ y) connected using the logical operators. If P and Q are propositions, e.g.,
P could be (x ∈ y) and Q could be (y ∈ z ) then ¬P , P ∧ P , P ∨ Q P → Q,
P↔Q, ∀xP and ∃xP are also propositions.

The effect of the connectives on the truth value of propositions is expressed
in Table B . Thus, if the proposition P takes value “True” and the proposition Q
takes the value “False” then the proposition (P ∧Q) takes the value “False”. The
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P Q ¬P P ∧ Q P ∨ Q P → Q P↔Q
T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

Table B.1: The truth tables of the logical operators. T stands for “True” and F for
“False”.

propositions ∀xP and ∃xP tell us that x is a variable that can take as value any
formal object that qualifies as a set. It also tells us that P is a proposition whose
truth value depends on x. For example, P could be (x ∈ y) ∨ (x ∈ z), where
y and z are fixed sets and x acts as a variable. The proposition ∀xP takes the
value “True” if P takes the value “True” for all sets. The proposition ∃xP takes
the value “True” if there is at least one set for which P takes the value “True”.
Remember when we say for all sets we do not mean sets of physical objects. In
fact we still have to define what we mean by set.

B.1 Proofs and Logical Truth

Sometimes we treat propositions as formulas whose truth value depends on the
truth values taken by variables in the proposition. For example if P and Q are
propositional variables then the P ∧ Q is a propositional formula whose truth
value depends on the specific truth values taken by P and Q. We say that a propo-
sitional formula is logically true if for all valid combinations of truth values of
the elements in the formula, the formula can only take the value “True”. For
example for the formula (P ∨ ¬P ) there is only two valid combination of truth
values for P and ¬P : “True, False” and “False, True”. In both case the formula
(P ∨ (¬P )) takes the value “True” and thus we say that it is logically true. Sim-
ilarly if a propositional formula can only take “False” values we say that it is
logically false. For example (P ∧ (¬P )) is logically false. A proof is a process
that shows a propositional formula is logically true.
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B.2 The Axioms of Set Theory
To simplify the presentation of axiomatic set theory I will use “pseudocode”, i.e.,
a combination of logical propositions, mathematical symbols, and English state-
ments. I do so under the understanding that all these statements can be written as
pure logical propositions.

I will use the symbol "∈ in propositions of the form (x "∈ y) as an alternative
notation to ¬(x ∈ y). I will use the formula

∃{x : P} (B.4)

as an alternative notation to the propositional formula

∃y∀xP (B.5)

This formula simply says that there is a set of elements that satisfy the proposition
P . If the formula takes the value “True” then the symbols {x : P} refers to a set
that make the proposition ∀xP “True”. When a set x makes the proposition P
true, I will say that x satisfies P . For example the set 1 satisfies the propositional
formula (x ∈ {1, 2}).

In set theory all existing objects are sets. If an object exists it is a set otherwise
it does not exist. To remind us of the fact that sets include elements we sometimes
refer to sets as a collection of sets, or as a families of sets. This is just a “human
factors” trick since the theory makes no distinction between sets, families, collec-
tions or elements. In axiomatic set theory elements, collections, and families are
just sets.

Axiomatic set theory is commonly presented using 9 redundant axioms, which
are the foundation of all mathematical statements.

B.2.1 Axiom of Existence:
An axiom is a restriction in the truth value of a proposition. The axiom of exis-
tence forces the proposition

∃y∀x(x "∈ y) (B.6)

to take the value “True”. We call call the sets that satisfy ∀x(x "∈ y) empty sets.
Thus the axiom of existence tells us that there is at least one empty set, we will
see later that in fact there is only one empty set.
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B.2.2 Axiom of Equality:
This axiom is also called the axiom of extensionality and it defines the predicate
“=”. For mnemonic convenience when the proposition (x = y) takes the value
“True” we say that the sets x and y are equal. In order to define how the symbol
“=” works it is convenient to create a new predicate, which we will symbolize as
⊂. The new predicate works as follows: For all sets u and v if the proposition

∀x(x ∈ u) → (x ∈ v) (B.7)

is true then the proposition (u ⊂ v) is true. For mnemonic convenience if the
proposition (u ⊂ v) takes the value “True” we say that u is a subset of v.

The axiom of equality says that if the proposition (u ⊂ v) ∧ (v ⊂ u) is true
then the proposition (u = v) is true. In other word, the proposition

∀u(u ∈ x↔u ∈ y) → (x = y) (B.8)

takes the value “True”. The formula (x "= y) is used as an alternative notation to
¬(x = y). We will now use the axiom of equality to prove that there is only one
empty set.

Theorem: The empty set is unique.

Proof: Let x and y be empty sets, then u ∈ y and u ∈ x are always false for
all sets u. Thus (u ∈ y↔u ∈ x) is true for all sets u and since by the axiom of
equality

(∀u(u ∈ x↔u ∈ y)) → (x = y) (B.9)
is true then it follows that (x = y) must be true. Hereafter we identify the empty
set with the symbols ∅ or alternatively with the symbol {}.

!

B.2.3 Axiom of Pair:
So far set theory has only given us one set: the empty set. The axiom of pair
brings new sets to life. The axiom of pair says that if x and y exist (i.e., if they are
sets) there also exists a set whose only elements are x and y. We will represent
such set as {x, y}. The axiom of pair forces the proposition

∀x∀y∃{x, y} (B.10)
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to take the value “True”. The set made out of the sets a and a is symbolized as
{a, a} or {a} and is called the singleton whose only element is a. So starting
with the empty set ∅, it follows that the set {∅} exists. Note that ∅ and {∅} are
different since the first has no element and the second has one element, which is
the empty set.

Ordered pairs: The ordered pair of the sets x and y is symbolized (x, y) and
defined as follows

(x, y)"{{x}, {x, y}} (B.11)

where " stands for “equal by definition”.

Exercise: Prove that two ordered pairs (a, b) and (c, d) are equal if and only if
a = b and c = d.

Ordered sequences: Let x1, . . . , xn be sets. The ordered sequence (x1, . . . , xn)
is recursively defined as follows

(x1, · · · , xn) = ((x1, · · · , xn−1), xn) (B.12)

Exercise: Prove that two n-tuples pairs (a1, . . . , an) and (b1, . . . , bn) are equal
if and only if a1 = b1 and a2 = b2 and ... an = bn.

B.2.4 Axiom of Separation:

This axiom tells us how to generate new sets out of elements of an existing set.
To do so we just choose elements of an existing set that satisfy a proposition.
Consider a proposition P whose truth value depends on the sets u and v, for
example, P could be (u ∈ v). The axiom of separation forces the proposition

∃{x : (x ∈ u) ∧ P} (B.13)

to take the value “True” for all sets u, v and for all propositions P with truth values
dependent on u and v.
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Fact: There is no set of all sets.
The proof works by contradiction. Assume there is a set of all sets, and call it u.
Then by the axiom of separation the following set r must exist

r = {x : (x ∈ u) ∧ (x "∈ x)} (B.14)

and since (x ∈ u) is always true, this set equals the set

{x : x "∈ x} (B.15)

Then (r ∈)r↔(r "∈ r) which is a logically false proposition. Thus the set of all
sets does not exist (i.e., it is not a set).

Intersections: The intersection of all the sets in the set s, or simply the inter-
section of s is symbolized as ∩s and defined as follows:

∩s = {x : ∀y( (y ∈ s) → (x ∈ y) )} (B.16)

For example, if s = {{1, 2, 3}, {2, 3, 4}} then ∩s = {2, 3}. The axiom of sepa-
ration tells us that if s exists then ∩s also exists. We can then use the axiom of
equality to prove that ∩s is in fact unique. For any two sets x and y, we represent
their intersection as x ∩ y and define it as follows

x ∩ y" ∩ {x, y} (B.17)

For example, if x = {1, 2, 3} and y = {2, 3, 4} then

x ∩ y = ∩{{1, 2, 3}, {2, 3, 4}} = {2, 3} (B.18)

B.2.5 Axiom of Union:
It tells us that for any set x we can make a new set whose elements belong to
at least one of the elements of x. We call this new set the union of x and we
represent it as ∪x. For example, if x = {{1, 2}, {2, 3, 4}} then ∪x = {1, 2, 3, 4}.
More formally, the axiom of union forces the proposition

∀s∃ ∪ s (B.19)

to be true. Here ∪s is defined as follows

∪s"{x : ∃y(y ∈ s) ∧ (x ∈ y)} (B.20)
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For example, if x = {{1, 2, 3}, {2, 3, 4}} then ∪x = {1, 2, 3, 4}. Using the axiom
of equality ∪x can be shown to be unique. For any two sets x and y, we define the
union of the two sets as follows For example,

{1, 2, 3} ∪ {2, 3, 4} = {1, 2, 3, 4} (B.21)

x ∪ y" ∪ {x, y} (B.22)

B.2.6 Axiom of Power:
This axiom tells us that for any set x the set of all subsets of x exists. We call
this set the power set of x and represent it as P(x). More formally, the axiom of
power forces the proposition

∀s∃{x : x ⊂ u} (B.23)
to take the value “True”. For example, if s = {1, 2} then

P(s) = {{1}, {2}, ∅, {1, 2}}. (B.24)

Cartesian Products: The Cartesian product of two sets u and v, is symbolized
a × b and defined as follows

a × b = {(x, y) : (x ∈ a) ∧ (y ∈ b)} (B.25)

Using the axioms of separation, union and power, we can show that x ∈ y exists
because it is a subset of P(P(x ∪ y)). Using the axiom of identity we can show
that it is unique.

Functions: A function f with domain u and target v is a subset of u × v with
the following property: If (a, c) and (b, c) are elements of f then a = b. More
formally, if the proposition

∀a∀b∀c(((a, c) ∈ f) ∧ ((b, c) ∈ f) → (a = b)) (B.26)

takes the value “True” then we say that the set f is a function.
The following formulae are alternative notations for the same proposition:

(x, y) ∈ f (B.27)
y = f(x) (B.28)
x 4→ f(x) (B.29)
x 4→ y (B.30)
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B.2.7 Axiom of Infinity:
This axiom forces the proposition

∃s∀x(x ∈ s) → ({x, {x}} ∈ s) (B.31)

to take the value “True”. In English this axiom tells us that there is a set s such
that if x is an element of s then the pair {x, {x}} is also an element of s. Sets that
satisfy the proposition

∀x(x ∈ s) → ({x, {x}} ∈ s) (B.32)

are called inductive (or infinite) sets.

Natural numbers: The natural numbers plus the number zero are defined as the
intersection of all the inductive sets and are constructed as follows:

0 " {} (B.33)
1 " {0, {0}} = {{}, {{}}} (B.34)
2 " {1, {1}} = {{{}, {{}}}, {{{}, {{}}}}} (B.35)
...

The axiom of existence in combination with the axiom of infinity guarantee
that these sets exist. Note that the symbols 1, 2, · · · are just a mnemonic conve-
nience. The bottom line is that numbers, and in facts all sets, are just a bunch of
empty curly brackets!

B.2.8 Axiom of Image:
Let f : u → v be a function (i.e, a subset of u× b). Define the image of u under f
as the set of elements for which there is an element of u which projects into that
element. We represent that set as If(u). More formally

If (u) = {y : ∃x(x ∈ u) ∧ (f(x) = y)} (B.36)

The axiom of image, also called the axiom of replacement, tells us that for all sets
u and for all functions f with domain u the set If (u) exists.
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B.2.9 Axiom of Foundation:
This axiom prevents the existence of sets who are elements of themselves.

B.2.10 Axiom of Choice:
This axiom tells us that every set with no empty elements has a choice function. A
choice function for a set s is a function with domain s and such that for each x ∈ s
the function takes a value f(x) ∈ x which is an element of x. In other words, the
function f picks one element from each of the sets in s, thus the name “choice
function”. For example, For the set s = {{1, 2, 3}, {2, 5}, {2, 3}} the function
f : s → {1, 2, 3} such that

f({1, 2, 3}) = 3 (B.37)
f({2, 5}) = 2 (B.38)
f({2, 3}) = 2 (B.39)

is a choice function since for each set in s the function f picks an element of
that set. The axiom of choice is independent of the other axioms, i.e., it cannot be
proven right or wrong based on the other axioms. The axiomatic system presented
here is commonly symbolized as ZFC (Zermelo-Fraenkel plus axiom of Choice),
the axiomatic system without the axiom of choice is commonly symbolized as ZF.
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