
Understanding Support Vector Machines

For today’s class, we’re going to play with a very fast and robust solver to the SVM learning
problem we’ve been talking about in class. This will give you some experience with a state of the
art SVM implementation (and, in general, classification algorithm) and you’re also going to get a
bit more comfortable running things from the command-line.

1 SVMlight

The SVM solver we’re going to play with today is SVMlight which is a freely available solver for
the SVM learning problem available at:

http://svmlight.joachims.org/

It has the standard binary classification version, but it also has many other variants like a multi-
class version. SVMlight is my personal favorite SVM implementation (and, probably classifier) since
it is extremely fast and does very well with high dimensional data sets.

2 Lab starter

To get started, ssh into little.cs.pomona.edu

ssh username@little.cs.pomona.edu

where username is your CS username.

Copy over everything in the starter for this lab into your home directory somewhere, e.g.:

cp -r /home/dkauchak/PUBLIC/cs158/svm_lab_starter/ .

You should now have a directory called svm lab starter which you can cd into:

cd svm_lab_starter

In there you will find four directories:

1

- svmlight: The basic, binary classification version of SVMlight

- svmlight multiclass: The multiclass version of SVMlight

- bin: Some helper scripts to help us out

- data: Versions of our two data sets that have been formatted to be read by SVMlight

Throughout the rest of this handout I’ll assume you’re running all of the commands from the base
of this starter directory.

3 Binary classification

To start with, let’s see how well the SVMlight does on the titanic problem. In the data directory
there is a file called titanic.svm. Open up this file with your favorite text editor and take a look
at the file format. Each line represents an example. The line starts with the label and then the
features are written as “<featureNumber>:<value>”. Given this, do you think SVMlight can
handle a sparse feature representation?

Before we can train our classifier, we first need to split our data into training and testing. First,
create a working directory to play in:

mkdir working

Now, let’s figure out how man lines/examples are in the titanic file. Type:

wc -l data/titanic.svm

You should have gotten back that there were 714 lines in the file.

Now, let’s create an 80/20 split (i.e. 571/143 examples). To do this, we’ll just take the first
examples as training and the last examples as testing. To do this, we’re going to use the head and
tail commands.

head -n 571 data/titanic.svm > working/titanic.train.svm

tail -n 143 data/titanic.svm > working/titanic.test.svm

(If you’re not familiar with it, the > sends the output from a program to a particular file.)

Now, run the SVMlight classifier without any arguments to see what parameters it takes:

svmlight/svm_learn

At the top you should see the usage which says something like:

2

usage: svm_learn [options] example_file model_file

The example file is the input file (i.e. training file) and the model file is the output file that
contains the model. Notice also there are a whole bunch of other parameters to play with! For
now, though, just run it with the default parameters:

svmlight/svm_learn working/titanic.train.svm working/titanic.model

As I mentioned before, SVMlight uses a very efficient optimization algorithm and it should finish
almost immediately. Take a look at the output that the SVM training gives you. See if you can
interpret the output (you should be able to understand at least half of it).

Before we try and classify the data, let’s take a peak at the model file to see what SVMlight actually
learned. Using a text editor, open the file working/titanic.model. The first few lines display the
options that were used to train the model and some other meta-data about training. After that,
what is displayed are all of the support vectors! Because SVMlight allows for other types of models
besides just linear, this turns out to be a better representation.

However, one of the nice things about a linear model is that they’re easy to understand. For
example, we can look at which weights have the largest magnitude and that should be indicative
of the more important features (why?). I’ve provided a script in the bin directory that goes from
the support vector representation and reproduces the actual weights:

python bin/svm2weight.py working/titanic.model

Do the weights make sense? Recall that the SVM learning problem can be thought of as minimizing
hinge loss with L2 regularization. Does the results reflect this regularization (Hint: the results are
one reason why people prefer L1 regularization over L2).

Ok, now let’s classify our test data and see how we did. Run the classify method without any
parameters to see what parameters it takes:

svmlight/svm_classify

The first parameter is the test example, the second the learned model and the third it the output
file where the predictions will go. So, to classify run:

svmlight/svm_classify working/titanic.test.svm working/titanic.model

working/titanic.output

(all one line)

Besides classifying all the examples, the classify program also outputs some evaluation statistics
for us. How did we do? Remember this is just one split of the data, so we shouldn’t make any
major claims.

3

4 Binary wine prediction

To play with a more interesting binary classification problem (well, at least more features) I picked
two of the wine categories and made a binary classification problem in the file data/wine.binary.svm
which is a file that has Cabernet-Sauvignon as the positive class and Pinot-Noir as the negative
class.

1. split the data into an 80/20 train/test split using the same technique as above

2. train the svm classifier

3. test the svm classifier

How do we do?

To try and understand why we do so well, let’s take a look at the feature weights again:

python bin/svm2weight.py working/wine.model

This time, we see way, way too many to really make any sense of the model. What we’re really
interested in are the features that have the largest magnitude. So, let’s sort the file based on that:

python bin/svm2weight.py working/wine.model | sort -n -k 3 >

working/wine.weights

(all one line)

This sends the weights to the built in sorting method (sorting them by the third column and
treating them as numbers) and then sends the output to wine.weights.

If you open up this file at the beginning will be the most negative words/features and at the end
the most positive words/features (minus the fact that sorting doesn’t handle scientific notation
correctly).

Right now, these features are just numbers. To understand what features they represent, open up
the file data/wine.features which has the corresponding words for each feature. Look at the top
few most negative and positive features. Do they make sense?

5 Multiclass classification

SVMlight also has a multiclass variant that has a similar interface to the binary classifier. The one
difference is that it does NOT automatically set C for you. Recall that for the SVM, this trades
off the margin and the slack penalties with larger C biasing towards weighting the slack penalties
more. If we interpret this as a gradient descent method, though, the C constant trades off the loss
versus the regularization with smaller C biasing towards more regularization.

4

1. split the wine data wine.svm into an 80/20 train/test split using the same technique as above

2. train the svm classifier

You’ll need to set the C parameter, to do this, use the -c flag:

svmlight_multiclass/svm_multiclass_learn -c <some_number>

working/wine.train.svm working/wine.model

(all one line)

3. test the svm classifier

svmlight_multiclass/svm_multiclass_classify working/wine.test.svm

working/wine.model working/wine.out

(all one line)

How did you do? Most likely, not that well :(The choice of C is critical to the performance of
the SVM classifier. For the binary classifier, there are reasonable heuristics for setting it. For the
multiclass classifier, we’re going to have to do it the old-fashioned way, brute force search.

The following commands will check all the C values between 1 and 10 with increments of 1:

for i in ‘seq 1 1 10‘;

do

svmlight_multiclass/svm_multiclass_learn -c $i working/wine.train.svm working/wine.model;

svmlight_multiclass/svm_multiclass_classify working/wine.test.svm working/wine.model working/wine.out;

done;

where the single quotes are ticks (the character in the upper left on the keyboard). You can either
enter it as multiple lines or on a single line.

This will print out all of the testing results for the 10 experiments. If you just want to see the
Zero/one loss (i.e. the error) you can add a grep statement at the end:

for i in ‘seq 1 1 10‘;

do

svmlight_multiclass/svm_multiclass_learn -c $i working/wine.train.svm working/wine.model;

svmlight_multiclass/svm_multiclass_classify working/wine.test.svm working/wine.model working/wine.out;

done | grep "Zero/one-error on test set"

where the single quotes are ticks (the character in the upper left on the keyboard). You can either
enter it as multiple lines or on a single line.

5

6 Can you do better?

Time permitting, let’s see how well we can do on our wine task. I will put together a random
train/test split of our data. When you’re ready, you can see how well you do on the data.

Here are a few tips for experimenting:

• Look at the documentation for the train method (i.e. run it without any parameters) and see
what other options are supported. Try some of these out.

• So far, we’ve only done one train/test split. If you want, you can write a short script (python,
perl?) to generate more random splits. Another way is to randomly shuffle the data and then
use our same head/tail approach. To create a random shuffle of the data we can use the
sort method:

sort -R data/wine.svm > working/wine.random.svm

After doing this, wine.random.svm will have a random permutation of the lines in wine.svm

Have fun!

6

