

1

Midterm details

Time limited take home exam (you'll have 2 hours to complete it)

Available on Monday (2/21)
Must finish by end of the day on Friday (2/25)

You may use your notes, the class notes, the class book(s), and your assignments

You may NOT use any other resources on the web or search for things on the web

3

## Admin

Assignment 3 graded

Assignment 5 out
$\square$ Course feedback

Midterm next week

Assignment 6 will also be next week

2

## Midterm topics

| Date | Topic |
| :--- | :--- |
| $1 / 18$ | introduction (ppt) |
| $1 / 20$ | decision trees (ppt) |
| $1 / 25$ | geometric view of data (ppt) |
| $1 / 27$ | perceptron (ppt) |
| $2 / 1$ | features (ppt) |
| $2 / 3$ | evaluation (ppt) |
| $2 / 8$ | imbalanced data (ppt) |
| $2 / 10$ | beyond binary classification (ppt) |
| $2 / 15$ | gradient descent |
| $2 / 17$ | regularization |
|  |  |
| (More details on Wednesday!) |  |

4


5

## Midterm topics

Geometric view of data
distances between examples
decision boundaries

Features
example features
removing erroneous features/picking good features
challenges with high-dimensional data
feature normalization

Other pre-processing
outlier detection

## 7

## Midterm topics

Learning algorithms
Decision trees
K-NN
Perceptron
Gradient descent

Algorithm properties
training/learning rational/why it works
classifying
hyperparameters
avoiding overfitting
algorithm variants/improvements

6
Midterm topics
Comparing algorithms
n-fold cross validation
leave one out validation
bootstrap resampling
t-test

8

| Midterm topics |
| :--- |
| Multiclass classification |
| Modifying existing approaches |
| Using binary classifier |
| OVA |
| AVA |
| Tree-based |
| micro- vs. macro-averaging |
| Ranking |
| using binary classifier |
| using weighted binary classifier |

9

Midterm general advice

2 hours goes by fast
Don't plan on looking everything up
Lookup equations, algorithms, random details
Make sure you understand the key concepts
Don't spend too much time on any one question
Skip questions you're stuck on and come back to them
Watch the time as you go
Be careful on the $T / F$ questions
For written questions
think before you write
make your argument/analysis clear and concise

11

## Midterm topics

Gradient descent

## $0 / 1$ loss

Surrogate loss functions
Convexity
minimization algorithm
regularization
different regularizers
p-norms

Misc
good coding habits
JavaDoc

10

12


13


15


14


16


17


19


18


20


21

## Perceptron learning algorithm

repeat until convergence (or for some \# of iterations):
for each training example ( $f_{1}, f_{2}, \ldots, f_{m}$, label):
prediction $=b+\sum_{j=1}^{m} w_{j} f_{j}$
if prediction * label $\leq 0$ : // they don't agree for each $w_{i}$ :
$w_{i}=w_{i}+f_{i}{ }^{*}$ label
$b=b+$ label

## Linear models

A linear model in $n$-dimensional space (i.e. $n$ features) is define by $n+1$ weights:

In two dimensions, a line:

$$
0=w_{1} f_{1}+w_{2} f_{2}+b \quad(\text { where } \mathrm{b}=-\mathrm{a})
$$

In three dimensions, a plane:

$$
0=w_{1} f_{1}+w_{2} f_{2}+w_{3} f_{3}+b
$$

In m-dimensions, a hyperplane
$0=b+\sum_{j=1}^{m} w_{j} f_{j}$

22


24

Which line will it find?


Only guaranteed to find some line that separates the data

25

## Perceptron learning algorithm

repeat until convergence (or for some $\#$ of iterations): for each training example ( $f_{1}, f_{2}, \ldots, f_{m}$, label): prediction $=b+\sum_{j=1}^{m} w_{j} f_{j}$
if prediction * label $\leq 0$ : // they don't agree
for each $w_{i}$ :
$w_{i}=w_{i}+f_{i}^{*}$ *abel
$b=b+$ label

## Linear models

Perceptron algorithm is one example of a linear classifier

Many, many other algorithms learn a line (i.e. a setting of a linear combination of weights)

Goals:
Explore a number of linear training algorithms
Understand why these algorithms work

26


28


29

## Model-based machine learning

pick a model
e.g. a hyperplane, a decision tree,...


A model is defined by a collection of parameters
2. pick a criterion to optimize (aka objective function)

What criteria do decision tree learning and perceptron learning optimizing?

## Model-based machine learning

pick a model
e.g. a hyperplane, a decision tree,. .


A model is defined by a collection of parameters

DT: the structure of the tree, which features each node splits on, the predictions at the leaves
perceptron: the weights and the b value

30

## Model-based machine learning

pick a model
e.g. a hyperplane, a decision tree,...


A model is defined by a collection of parameters
2. pick a criterion to optimize (aka objective function)
e.g. training error
3. develop a learning algorithm
the algorithm should try and minimize the criteria
sometimes in a heuristic way (i.e. non-optimally)
sometimes exactly


33

## Some notation: dot-product

Sometimes it is convenient to use vector notation

We represent an example $f_{1}, f_{2}, \ldots, f_{m}$ as a single vector, $x$

- $j$ subscript will indicate feature indexing, i.e., $x_{j}$
- i subscript will indicate examples indexing over a dataset, i.e., $x_{i}$ or sometimes $x_{i j}$

Similarly, we can represent the weight vector $w_{1}, w_{2}, \ldots, w_{m}$ as a single vector, w

The dot-product between two vectors $a$ and $b$ is defined as:
$a \cdot b=\sum_{j=1}^{m} a_{j} b_{j}$

35

## Some notation: indicator function

$$
1[x]=\left\{\begin{array}{cc}
1 & \text { if } x=\text { True } \\
0 & \text { if } x=\text { False }
\end{array}\right\}
$$

Convenient notation for turning T/F answers into numbers/counts:

$$
\text { beers_to_bring_for_class }=\sum_{a g e \in c l a s s} 1[\text { age }>=21]
$$

34

| Linear models |
| :--- |
| 1. pick a model |
| $0=$ bb $\sum_{j=1}^{n} w_{i j} f_{j}$ |
| These are the parameters we want to learn |
| 2. pick a criterion to optimize (aka objective function) |
| $\sum_{i=1}^{n} 1\left[y_{i}\left(w \cdot x_{i}+b\right) \leq 0\right]$ |
| What does this equation say? |

36


37


39

## Model-based machine learning

1. pick a model

$$
0=b+\sum_{j=1}^{m} w_{j} f_{j}
$$

2. pick a criteria to optimize (aka objective function)

$$
\sum_{i=1}^{n} 1\left[y_{i}\left(w \cdot x_{i}+b\right) \leq 0\right]
$$

3. develop a learning algorithm

$$
\operatorname{argmin}_{w, b} \sum_{i=1}^{n} 1\left[y_{i}\left(w \cdot x_{i}+b\right) \leq 0\right] \quad \begin{aligned}
& \text { Find } w \text { and } \mathrm{b} \text { that } \\
& \text { minimize the } 0 / 1 \text { loss } \\
& \text { (i.e. training error) }
\end{aligned}
$$

38


40


41

More manageable loss functions


What property/properties do we want from our loss function?

## Minimizing 0/1 loss

$$
\operatorname{argmin}_{w, b} \sum_{i=1}^{n} 1\left[y_{i}\left(w \cdot x_{i}+b\right) \leq 0\right] \quad \begin{aligned}
& \text { Find } w \text { and } \mathrm{b} \text { that } \\
& \text { minimize the } 0 / 1 \text { loss }
\end{aligned}
$$

This turns out to be hard (in fact, NP-HARD : )
Challenge:

- small changes in any w can have large changes in the loss (the change isn't continuous)
- there can be many, many local minima
- at any given point, we don't have much information to direct us towards any minima

42


44

## Convex functions

Convex functions look something like:


One definition: The line segment between any two points on the function is above the function

45

## Surrogate loss functions

$$
0 / 1 \text { loss: } \quad l\left(y, y^{\prime}\right)=1\left[y y^{\prime} \leq 0\right]
$$

Ideas?
Some function that is a proxy for
error, but is continuous and convex

## Surrogate loss functions

For many applications, we really would like to minimize the $0 / 1$ loss

A surrogate loss function is a loss function that provides an upper bound on the actual loss function (in this case, 0/1)

We'd like to identify a convex surrogate loss functions to make them easier to minimize

Key to a loss function: how it scores the difference between the actual label $\boldsymbol{y}$ and the predicted label $\boldsymbol{y}^{\prime}$

46

| Surrogate loss functions |  |
| :---: | :---: |
| $0 / 1$ loss: | $l\left(y, y^{\prime}\right)=1\left[y y^{\prime} \leq 0\right]$ |
| Hinge: | $l\left(y, y^{\prime}\right)=\max \left(0,1-y y^{\prime}\right)$ |
| Exponential: $\quad l\left(y, y^{\prime}\right)=\exp \left(-y y^{\prime}\right)$ |  |
| Squared loss: $\quad l\left(y, y^{\prime}\right)=\left(y-y^{\prime}\right)^{2}$ |  |
| Why do these work? What do they penalize? |  |

48

## Surrogate loss functions

| $0 / 1$ loss: | $l\left(y, y^{\prime}\right)=1\left[y y^{\prime} \leq 0\right] \quad$ Hinge: $\quad l\left(y, y^{\prime}\right)=\max \left(0,1-y y^{\prime}\right)$ |  |
| :---: | :---: | :---: |
| Squared loss: | $l\left(y, y^{\prime}\right)=\left(y-y^{\prime}\right)^{2}$ | Exponential: $\quad l\left(y, y^{\prime}\right)=\exp \left(-y y^{\prime}\right)$ |

Squared loss: $\quad l\left(y, y^{\prime}\right)=\left(y-y^{\prime}\right)^{2} \quad$ Exponential: $\quad l\left(y, y^{\prime}\right)=\exp \left(-y y^{\prime}\right)$


49

Finding the minimum


You're blindfolded, but you can see out of the bottom of the blindfold to the ground right by your feet. I drop you off somewhere and tell you that you're in a convex shaped valley and escape is at the bottom/minimum. How do you get out?

51

## Model-based machine learning

pick a model

$$
0=b+\sum_{j=1}^{m} w_{j} f_{j}
$$

2. pick a criteria to optimize (aka objective function)

$$
\sum_{i=1}^{n} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right) \quad \begin{aligned}
& \text { use a convex surrogate } \\
& \text { loss function }
\end{aligned}
$$

. develop a learning algorithm

$$
\operatorname{argmin}_{w, b} \sum_{i=1}^{n} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right) \quad \begin{aligned}
& \text { Find } w \text { and } \mathrm{b} \text { that } \\
& \text { minimize the } \\
& \text { surrogate loss }
\end{aligned}
$$

Finding the minimum


52

## One approach: gradient descent

Partial derivatives give us the slope (i.e. direction to move) in that dimension


53

## One approach: gradient descent

Partial derivatives give us the slope (i.e. direction to move) in that dimension

## Approach:

$\square$ pick a starting point (w)
$\square$ repeat:

- pick a dimension
- move a small amount in that dimension towards decreasing loss (using the derivative)

55

## One approach: gradient descent

Partial derivatives give us the slope (i.e. direction to move) in that dimension

## Approach:

- pick a starting point (w)
$\square$ repeat:
- pick a dimension
- move a small amount in that
dimension towards decreasing loss (using the derivative)

54


56


57

Some math

$$
\begin{aligned}
\frac{d}{d w_{j}} \text { loss } & =\frac{d}{d w_{j}} \sum_{i=1}^{n} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right) \\
& =\sum_{i=1}^{n} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right) \frac{d}{d w_{j}}-y_{i}\left(w \cdot x_{i}+b\right)
\end{aligned}
$$



58

Some math $\square$

$$
-\frac{d}{d w_{j}} y_{i}\left(\mathrm{w} \cdot \mathrm{x}_{\mathrm{i}}+\mathrm{b}\right)=-\frac{d}{d w_{j}} \mathrm{y}_{\mathrm{i}}\left(\sum_{j=1}^{m} w_{j} x_{i j}+\mathrm{b}\right)
$$

$$
=-\frac{d}{d w_{j}} y_{i}\left(w_{1} x_{i 1}+w_{2} x_{i 2}+\ldots+w_{m} x_{i m}+\mathrm{b}\right)
$$

$$
\left.=-\frac{d}{d w_{j}} y_{i} w_{1} x_{i 1}+y_{i} w_{2} x_{i 2}+\ldots+y_{i} w_{m} x_{i m}+y_{i} b\right)
$$

$$
=-y_{i} x_{i j}
$$

60


61

## Exponential update rule

$w_{j}=w_{j}+\eta \sum_{i=1}^{n} y_{i} x_{i j} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)$
for each example $\mathrm{x}_{\mathrm{i}}$ :

$$
w_{j}=w_{j}+\eta y_{i} x_{i j} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)
$$

Does this look familiar?

63


62

Perceptron learning algorithm!
repeat until convergence (or for some \# of iterations):
for each training example ( $f_{1}, f_{2}, \ldots, f_{m}$, label):
prediction $=b+\sum_{j=1}^{m} w_{j} f_{j}$
if prediction * label $\leq 0$ : // they don't agree
for each $w_{i}$ :
$w_{i}=w_{i}+f_{i}^{*}$ label
$b=b+$ label
$w_{j}=w_{j}+\eta y_{i} x_{i j} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)$
or
$w_{j}=w_{j}+x_{i j} y_{i} c \quad$ where $c=\eta \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)$

64


65

## Perceptron learning algorithm!

repeat until convergence (or for some \# of iterations):
for each training example ( $f_{1}, f_{2}, \ldots, f_{m}$, label):

$$
\text { prediction }=b+\sum_{j=1}^{m} w_{j} f_{j}
$$

if prediction * label $\leq 0$ : // they don't agree
for each $w_{i}$ :
Note: for gradient descent, we always update
$w_{i}=w_{i}+f_{i}$ *label
$b=b+$ label
$w_{j}=w_{j}+\eta y_{i} x_{i j} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)$
or
$w_{j}=w_{j}+x_{i j} y_{i} c \quad$ where $\quad c=\eta \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)$

67


66
One concern
We're calculating this on the training set
We still need to be careful about
overfitting!
The min w,b on the training set is $\sum_{i=1}^{n} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)$
generally NOT the min for the test set
How did we deal with this for the perceptron algorithm?

68


69

