

1

3

2

4

5

6

8

> Can we solve our multiclass problem with this?

9

10

11

12

13

15

14

16

17

19

18

20

OVA: classify, perceptron

Classify:

\square If classifier doesn't provide confidence (this is rare) and there is ambiguity, pick majority in conflict
\square Otherwise:

- pick the most confident positive
- if none vote positive, pick least confident negative

How do we calculate this for the perceptron?

21

Approach 2: All vs. all (AVA)

Training:
For each pair of labels, train a classifier to distinguish between them
for $i=1$ to number of labels:
for $k=i+1$ to number of labels:
train a classifier to distinguish between label l_{i} and label l_{k} :

- create a dataset with all examples with label labeled positive and all examples with label l_{k} labeled negative
- train classifier on this subset of the data

OVA: classify, perceptron

Classify:

- If classifier doesn't provide confidence (this is rare) and there is ambiguity, pick majority in conflict
\square Otherwise:
- pick the most confident positive
- if none vote positive, pick least confident negative
prediction $=b+\sum_{i=1}^{n} w_{i} f_{i}$
Distance from the hyperplane

22

24

25

AVA classify

To classify example e, classify with each classifier $f_{i k}$

We have a few options to choose the final class:
Take a majority vote
Take a weighted vote based on confidence $y=f_{i k}(e)$
score $_{i}+=y$ How does this work? scorek $_{\text {k }}=$ y

Here we're assuming that y encompasses both the prediction $(+1,-1)$ and the confidence, i.e. $y=$ prediction $*$ confidence

26

28

OVA vs. AVA

Train/classify runtime?

Error? Assume each binary classifier makes an error with probability ε

31

OVA vs. AVA

Train time:
AVA learns more classifiers, however, they're trained on much smaller data this tends to make it faster if the labels are equally balanced

Test time:
AVA has more classifiers, so often it is slower
Error (see the book for more justification):
AVA trains on more balanced data sets
AVA tests with more classifiers and therefore has more chances for errors

- Theoretically:
-- OVA: ε (number of labels -1)
-- AVA: 2ε (number of labels -1)

30

Multiclass summary

If using a binary classifier, the most common thing to do is OVA

Otherwise, use a classifier that allows for multiple labels:

- DT and k-NN work reasonably well
\square We'll see a few more in the coming weeks that will often work better

33

35

34

36

Macroaveraging vs. microaveraging

microaveraging: average over examples (this is the "normal" way of calculating)
macroaveraging: calculate evaluation score (e.g. accuracy) for each label, then average over labels

- Puts more weight/emphasis on rarer labels
- Allows another dimension of analysis

Macroaveraging vs. microaveraging			
	label apple orange apple banana banana pineapple	prediction orange orange apple pineapple banana pineapple	microaveraging: $4 / 6$ macroaveraging: $\begin{aligned} \text { apple } & =1 / 2 \\ \text { orange } & =1 / 1 \\ \text { banana } & =1 / 2 \\ \text { pineapple } & =1 / 1 \\ \text { total } & =(1 / 2+1+1 / 2+1) / 4 \\ & =3 / 4 \end{aligned}$

39

38

Confusion matrix

entry (i, j) represents the number of examples with label i that were predicted to have label j
another way to understand both the data and the classifier

	Classic	Country	Disco	Hiphop	Jazz	Rock
Classic	86	2	0	4	18	1
Country	1	57	5	1	12	13
Disco	0	6	55	4	0	5
Hiphop	0	15	28	90	4	18
Jazz	7	1	0	0	37	12
Rock	6	19	11	0	27	48

40

41

Multilabel vs. multiclass classification

43

Multilabel vs. multiclass classification

| - Is it edible? |
| :--- | :--- | :--- |
| - Is it sweet? |
| - Is it a fruit? |
| - Is it a banana? |\quad| Is it a banana? |
| :--- |
| Is it an apple? |
| Is it an orange? |
| Is it a pineapple? |\quad| Is it a banana? |
| :--- | :--- |
| Is it yellow? |
| Is it sweet? |
| Is it round? |

Any difference in these labels/categories?

42

44

45

46

47

Suggest a simpler word

Suggest a simpler word for the word below:
acquired

48

49

51

50

52

54

Black box approach to ranking

Abstraction: we have a generic binary classifier, how can we use it to solve our new problem

Can we solve our ranking problem with this?

Ranking Applications

reranking N -best output lists
machine translation
computational biology
parsing
...
flight search
-••

55

57

58

60

59

Combined feature vector

Many approaches! Will depend on domain and classifier

Two common approaches:

difference:

$$
f_{i}^{\prime}=a_{i}-b_{i}
$$

2. greater than/less than:

$$
f_{i}^{\prime}=\left\{\begin{array}{cc}
1 \quad \text { if } a_{i}>b_{i} \\
0 & \text { otherwise }
\end{array}\right.
$$

61

64

65

66

67

68

69

70

72

Testing

If the classifier outputs a confidence, then we've learned a distance measure between examples

During testing we want to rank the examples based on the learned distance measure

Ideas?

71

73

74

75

