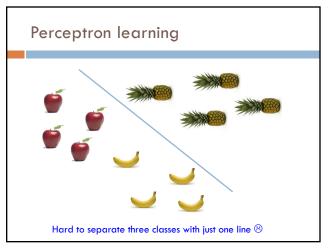
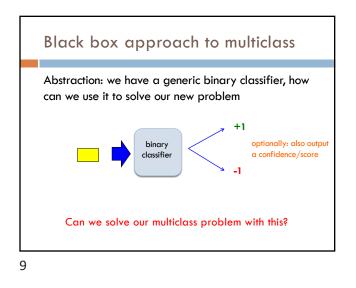
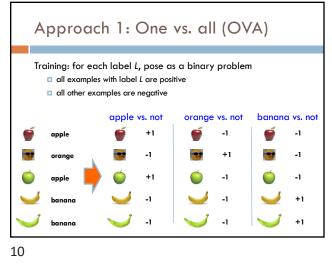
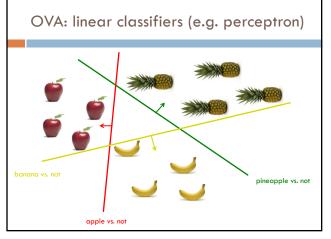


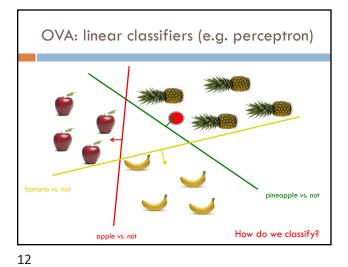
<section-header><section-header><section-header><section-header><list-item><list-item><list-item><section-header>

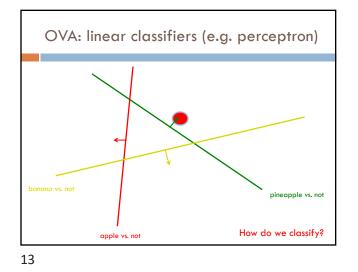


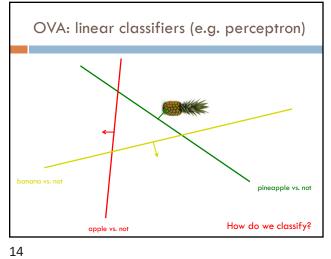


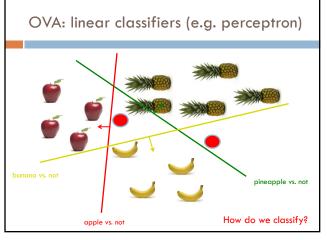


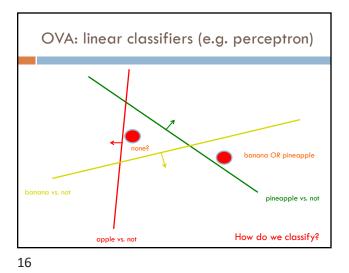


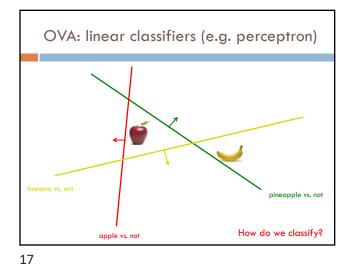












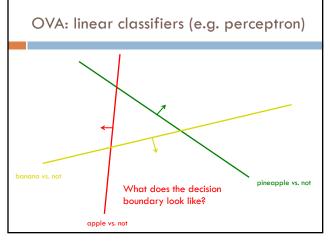
OVA: classify Classify:

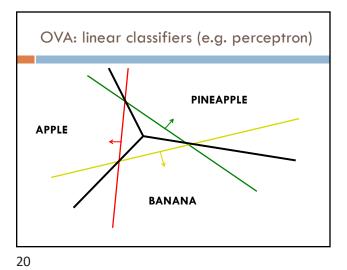
If classifier doesn't provide confidence (this is rare) and there is ambiguity, pick one of the ones in conflict

Otherwise:

- pick the most confident positive
- if none vote positive, pick *least* confident negative

18





OVA: classify, perceptron

Classify:

If classifier doesn't provide confidence (this is rare) and there is ambiguity, pick majority in conflict

Otherwise:

pick the most confident positive

if none vote positive, pick least confident negative

How do we calculate this for the perceptron?

21

OVA: classify, perceptron

Classify:

If classifier doesn't provide confidence (this is rare) and there is ambiguity, pick majority in conflict

Otherwise:

pick the most confident positive

if none vote positive, pick least confident negative

prediction = $b + \sum_{i=1}^{n} w_i f_i$

Distance from the hyperplane

22

Approach 2: All vs. all (AVA)

Training:

For each pair of labels, train a classifier to distinguish between them

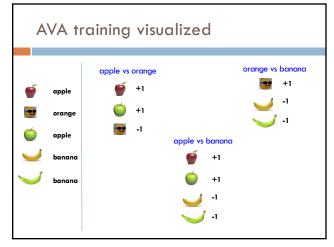
for i = 1 to number of labels:

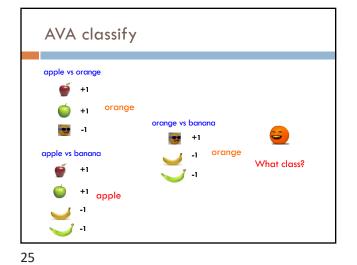
for k = i+1 to number of labels:

train a classifier to distinguish between label; and labelk:

 create a dataset with all examples with label_i labeled positive and all examples with label_k labeled negative

- train classifier on this subset of the data





AVA classify		
apple vs orange	orange vs banana	3
apple vs banana	-1 orange	orange
 +1 apple -1 -1 		In general?

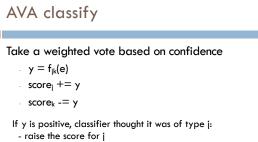
AVA classify

To classify example e, classify with each classifier $f_{i\boldsymbol{k}}$

We have a few options to choose the final class:

- Take a majority vote
- Take a weighted vote based on confidence
 - $y = f_{jk}(e)$
 - score_i += y How does this work?
 - score_k -= y

Here we're assuming that y encompasses both the prediction (+1,-1) and the confidence, i.e. y = prediction * confidence.



- lower the score for k
- if y is negative, classifier thought it was of type k:
- lower the score for j
- raise the score for k

OVA vs. AVA

Train/classify runtime?

Error? Assume each binary classifier makes an error with probability $\boldsymbol{\epsilon}$

29

Approach 3: Divide and conquer

	Multiclass summary
	If using a binary classifier, the most common thing to do is OVA
	Otherwise, use a classifier that allows for multiple labels: DT and k-NN work reasonably well We'll see a few more in the coming weeks that will often work better
32	

31

OVA vs. AVA

Train time:

AVA learns more classifiers, however, they're trained on much smaller data this tends to make it faster if the labels are equally balanced

Test time: AVA has more classifiers, so often it is slower

Error (see the book for more justification):

AVA trains on more balanced data sets

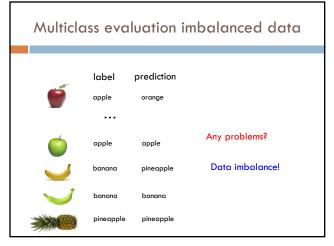
- AVA tests with more classifiers and therefore has more chances for errors
- Theoretically:
- -- OVA: ϵ (number of labels -1)
- -- AVA: 2 ϵ (number of labels -1)

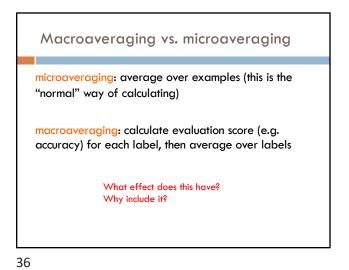
30

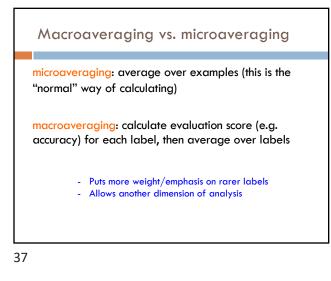
Г

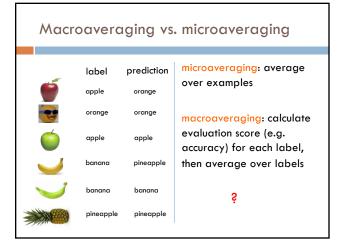
Multicl	ass ev	aluation	1
	label	prediction	
9	apple	orange	
	orange	orange	
6	apple	apple	How should we evaluate?
\checkmark	banana	pineapple	
\checkmark	banana	banana	
	pineapple	pineapple	
3			

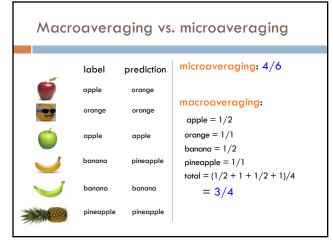
Multic	ass ev	aluatior	ı
	label apple orange apple banana banana	prediction orange orange apple pineapple banana	Accuracy: 4/6
	pineapple	pineapple	



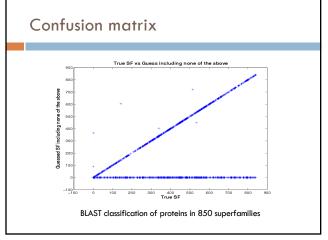


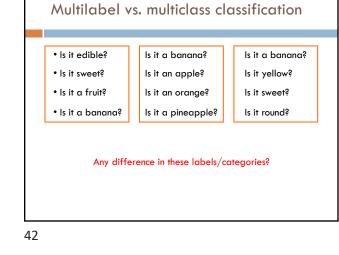


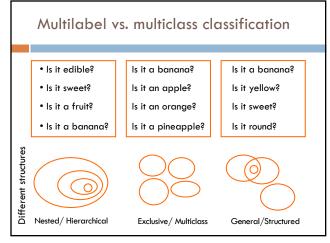


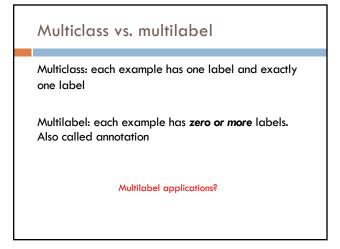


Confusion matrix							
entry (i , j) represents the number of examples with label i that were predicted to have label j another way to understand both the data and the classifier							
nother wa	ay to unde	erstand be	oth the	data an	d the	class	
nother wa	ay to unde	Country	Disco	data an Hiphop	Jazz	Class Rock	
Classic	,	1					
	Classic	Country	Disco	Hiphop	Jazz	Rock	
Classic	Classic 86	Country 2	Disco 0	Hiphop 4	Jazz 18	Rock	
Classic Country	Classic 86 1	Country 2 57	Disco 0 5	Hiphop 4 1	Jazz 18 12	Rock 1 13	
Classic Country Disco	Classic 86 1 0	Country 2 57 6	Disco 0 5 55	Hiphop 4 1 4	Jazz 18 12 0	Rock 1 13 5	









Multilabel

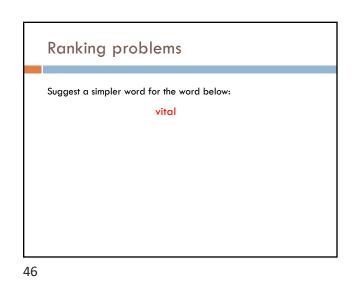
Image annotation

Document topics

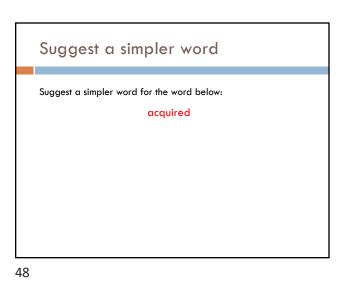
Labeling people in a picture

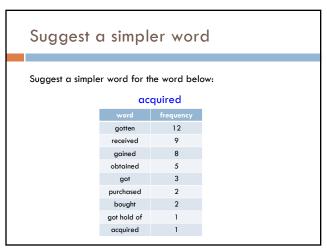
Medical diagnosis

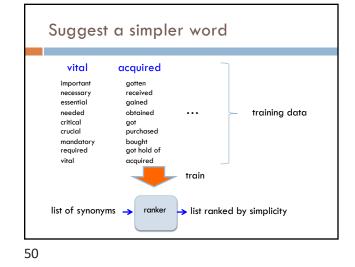
45

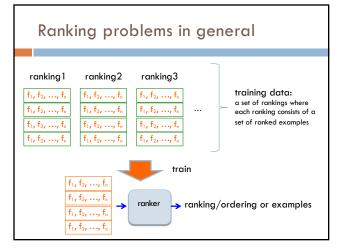


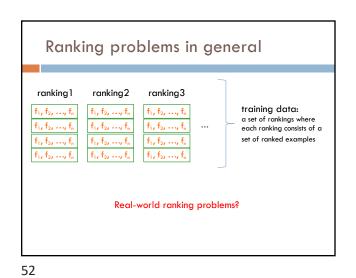
Suggest a simpler word Suggest a simpler word for the word below: vital important 13 12 necessary essential 11 needed 8 critical 3 crucial mandatory required 1 vital 1



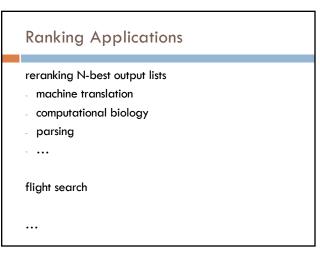




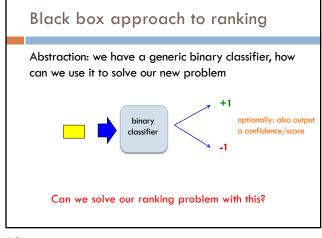


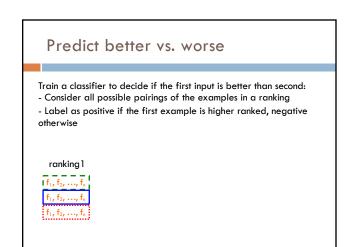


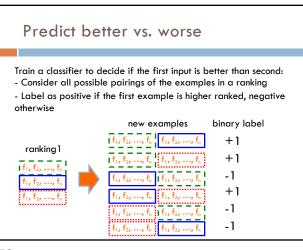
Search Googie <mark>ન</mark>ે વ All News Videos Shopping More - Search tool About 199,000 results (0.58 seconds) CS 451 - Machine Learning and Big Data - Fall 2013 www.cs.pomona.edu/-dkauchak/dasses/f13/cs451-f13/ * Pomona uter Science Middlebury College. CS 45 structor: Dave Kauchak e-mail: ... David Kauchak - Computer Science Departme www.cs.pomona.edu/~dkauchak/ - Pomona College + Fail office hours: Tue. 11am-12. Wed. 2:30-4pm. Thu. 2:30-4pm cummt schedule. Fail 2016 courses: CS 158 Machine Learning nent - Pomona C.. CS 158 - Machine Learning - Fall 2016 ter Science Pomona C Ing focuses on discover uchak - Google Scholar Citations or of Computer Science, Pomona C or of Computer Science, Pomona C erence on Machine learning, 545-5 ming Jobs in Pomona, CA | Lini > Jobs > Machine Learning Jobs - Link ne Learning jobs in Pomona, CA on Linke essional network, and get hired. New Mach 54

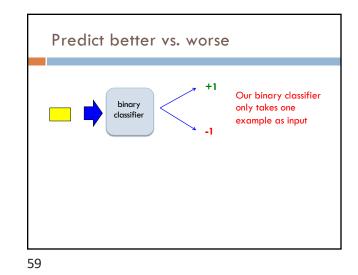


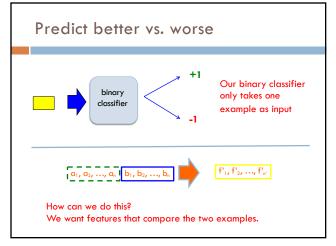
55

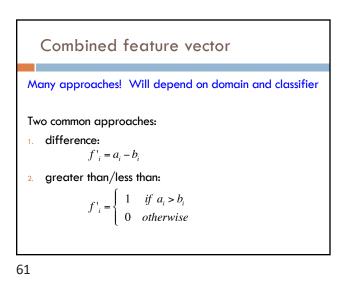


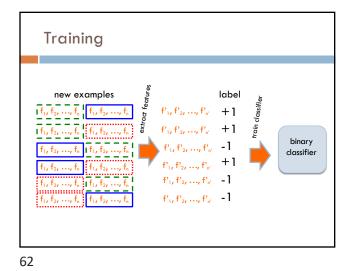


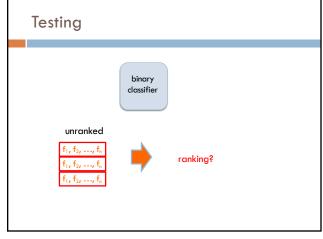


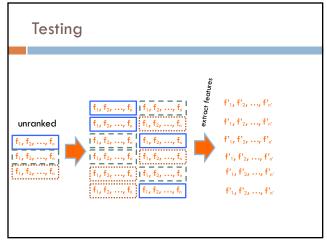


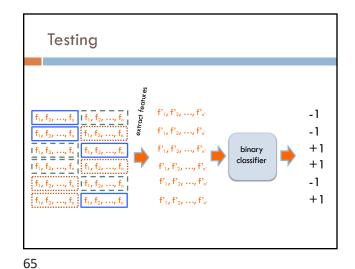


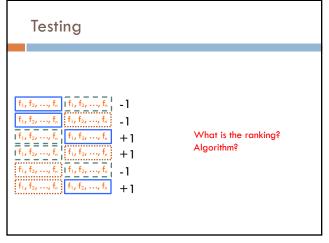


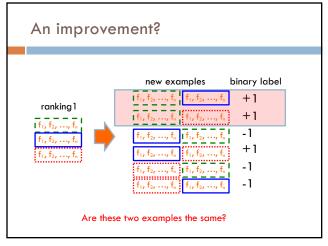


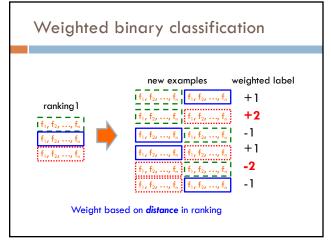












 $\begin{array}{l} \text{for each binary example } e_{jk} : \\ \textbf{label[j]} += f_{jk}(e_{jk}) \\ \textbf{label[k]} -= f_{jk}(e_{jk}) \end{array}$

rank according to label scores

l f₁, f₂, ..., f_n

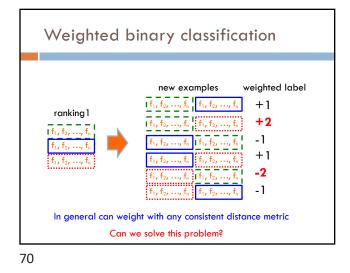
 $f_1, f_2, ..., f_n$ $f_1, f_2, ..., f_n$

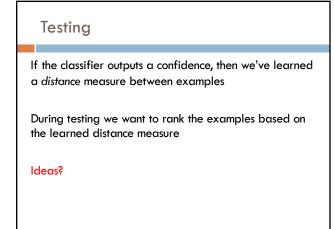
Testing

 $\begin{array}{c} f_{1}, f_{2}, ..., f_{n} & f_{1}, f_{2}, ..., f_{n} \\ \hline f_{1}, f_{2}, ..., f_{n} & f_{1}, f_{2}, ..., f_{n} \\ \end{array} = 1$

 $\begin{array}{c|c} r_{12} r_{22} \cdots r_{f_{1}} & r_{12} r_{22} \cdots r_{f_{1}} \\ \hline f_{12} f_{22} \cdots f_{n} & f_{12} r_{22} \cdots r_{n} \\ = & = & = \\ f_{11} f_{22} r_{22} \cdots r_{f_{n}} & f_{12} f_{22} \cdots r_{f_{n}} \\ \hline f_{12} f_{22} \cdots r_{f_{n}} & f_{12} f_{22} \cdots f_{n} \\ \hline f_{12} f_{22} \cdots r_{f_{n}} & f_{12} f_{22} \cdots r_{f_{n}} \\ \hline f_{12} f_{22} \cdots r_{f_{n}} & f_{12} f_{22} \cdots r_{f_{n}} \\ \hline f_{12} f_{22} \cdots r_{f_{n}} & f_{12} f_{22} \cdots r_{f_{n}} \\ \hline f_{12} f_{22} \cdots r_{f_{n}} & f_{12} f_{22} \cdots r_{f_{n}} \\ \hline \end{array}$

67



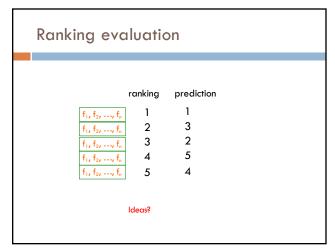


Testing

If the classifier outputs a confidence, then we've learned a *distance* measure between examples

During testing we want to rank the examples based on the learned distance measure

Sort the examples and use the output of the binary classifier as the similarity between examples!



73

ldea 1: accu	iracy			
$ \begin{array}{c c} f_{12} f_{22} \cdots f_n & 1 \\ f_{12} f_{22} \cdots f_n & 2 \\ f_{12} f_{22} \cdots f_n & 3 \end{array} $	prediction 1 3 2 5 4	1/5 = 0.2		
Any problems with this?				

