

Admin

2

Assignment 1 grading

Assignment 2 due Sunday at midnight

Slack (I think everyone is on the channel)

Machine learning models

Some machine learning approaches make strong assumptions about the data

- □ If the assumptions are true it can often lead to better performance
- If the assumptions aren't true, the approach can fail miserably

Other approaches don't make many assumptions about the data $% \left(1\right) =\left(1\right) \left(1\right)$

- $\hfill\Box$ This can allow us to learn from more varied data
- $\hfill\square$ But, they are more prone to overfitting
- $\hfill\square$ and generally require more training data

Data generating distribution

We are going to use the probabilistic model of learning

There is some probability distribution over example/label pairs called the data generating distribution

Both the training data **and** the test set are generated based on this distribution

What is a probability distribution?

11 12

Model assumptions

If you don't have strong assumptions about the model, it can take you a longer to learn

Assume now that our model of the blue class is two circles

14

Machine learning models What are the model assumptions (if any) that k-NN and decision trees make about the data? Are there data sets that could never be learned correctly by either?

23 24

Bias

The "bias" of a model is how strong the model assumptions are.

low-bias classifiers make minimal assumptions about the data (k-NN and DT are generally considered low bias)

high-bias classifiers make strong assumptions about the data

Linear models

A strong high-bias assumption is linear separability:

in 2 dimensions, can separate classes by a line
in higher dimensions, need hyperplanes

A linear model is a model that assumes the data is linearly separable

Hyperplanes

A hyperplane is a line/plane in a high-dimensional space

What defines a line? What defines a hyperplane? Defining a line

Any pair of values (w_1, w_2) defines a line through the origin:

30

29

Defining a line

Any pair of values (w_1, w_2) defines a line through the origin:

$$0 = w_1 f_1 + w_2 f_2$$

-0.5

Defining a line

Any pair of values (w_1, w_2) defines a line through the origin:

$$0 = w_1 f_1 + w_2 f_2$$

31

Any pair of values (w_1,w_2) defines a line through the origin: $0=w_1f_1+w_2f_2$ $0=1f_1+2f_2$ w=(1,2) We can also view it as the line perpendicular to the

33

weight vector

Defining a line

Any pair of values (w_1, w_2) defines a line through the origin:

37

Defining a line

Any pair of values (w_1, w_2) defines a line through the origin:

$$a = w_1 f_1 + w_2 f_2$$

-0.5

38

Linear models

A linear model in n-dimensional space (i.e. n features) is define by n+1 weights:

In two dimensions, a line: $0 = w_1 f_1 + w_2 f_2 + b$

$$0 = w_1 f_1 + w_2 f_2 + b$$
 (where b = -a)

In three dimensions, a plane:

$$0 = w_1 f_1 + w_2 f_2 + w_3 f_3 + b$$

In n-dimensions, a hyperplane

$$0 = b + \sum_{i=1}^{n} w_i f_i$$

Classifying with a linear model

We can classify with a linear model by checking the

 $b + \sum_{i=1}^{n} w_i f_i > 0$ Positive example

Now intersects at -1

 $b + \sum_{i=1}^{n} w_i f_i < 0$ Negative example

39

41

43 44

51 52

A closer look at why we got it wrong $w_1 \quad w_2 \quad (-1, 1, positive)$ $1*f_1+0*f_2 =$ 1*-1+0*1 = -1We'd like this value to be positive since it's a positive value

Which of the weights contributed to the mistake?

Learning a linear classifier $0 = w_1 f_1 + w_2 f_2$ $0*f_1+1*f_2=$ predicts negative, correct How should we update the model? w = (0,1)

66

A closer look at why we got it wrong $w_1 \quad w_2 \qquad (-1, -1, positive)$ $0*f_1+1*f_2 = \qquad \text{We'd like this value to be positive since it's a positive value}$ Which of the weights contributed to the mistake?

Perceptron learning algorithm repeat until convergence (or for some # of iterations): for each training example $(f_1, f_2, ..., f_n, label)$: check if it's correct based on the current model if not correct, update all the weights: if label positive and feature positive: increase weight (increase weight = predict more positive) else if label positive and feature negative: decrease weight (decrease weight = predict more positive) else if label negative and feature positive: decrease weight (decrease weight = predict more negative) else if label negative and feature negative: increase weight (increase weight = predict more negative)

A trick... label $* f_i$ if label positive and feature positive: increase weight (increase weight = predict more positive) else if label positive and feature negative: 1*-1=-1 decrease weight (decrease weight = predict more positive) -1*1=-1 else if label negative and feature positive: decrease weight (decrease weight = predict more negative) -1*-1=1 else if label negative and negative weight: increase weight (increase weight = predict more negative)

76 75

Perceptron learning algorithm repeat until convergence (or for some # of iterations): for each training example $(f_1, f_2, ..., f_n, label)$: check if it's correct based on the current model if not correct, update all the weights: for each wi: $w_i = w_i + f_i^* \text{label}$ b = b + labelHow do we check if it's correct?

Perceptron learning algorithm

repeat until convergence (or for some # of iterations): for each training example $(f_1, f_2, ..., f_n, label)$: $prediction = b + \sum_{i=1}^{n} w_i f_i$

if prediction * label \leq 0: // they don't agree for each w_i :

 $w_i = w_i + f_i * label$

b = b + label

Perceptron learning algorithm

repeat until convergence (or for some # of iterations): for each training example $(f_1, f_2, ..., f_n, label)$:

 $prediction = b + \sum_{i=1}^{n} w_i f_i$

if prediction * label ≤ 0 : // they don't agree

for each wi:

78

 $w_i = w_i + f_i^* \text{label}$

b = b + label

Would this work for non-binary features, i.e. real-valued?

80 79

87 88

repeat until convergence (or for some # of iterations): for each training example $(f_1, f_2, ..., f_n, label)$: $prediction = b + \sum_{i=1}^{n} w_i f_i$ if $prediction * label \le 0$: // they don't agree for each w_i : $w_i = w_i + f_i * label$ b = b + labelAlso helps avoid overfitting! (This is harder to see in 2-D examples, though)

repeat until convergence (or for some # of iterations):
 for each training example ($f_1, f_2, ..., f_n$, label):
 $prediction = b + \sum_{i=1}^{n} w_i f_i$ if $prediction * label \le 0$: // they don't agree
 for each w_i :
 $w_i = w_i + f_i * label$ b = b + labelWhat order should we traverse the examples?

Does it matter?

Ordering repeat until convergence (or for some # of iterations): randomize order of training examples for each training example ($f_1, f_2, ..., f_n$, label): $prediction = b + \sum_{i=1}^{n} w_i f_i$ if prediction * label \leq 0: // they don't agree for each w_i : $w_i = w_i + f_i * label$ b = b + label

Voted perceptron learning

Training

- every time a mistake is made on an example:
 - store the weights (i.e. before changing for current example)
- store the number of examples that set of weights got correct

Classify

- calculate the prediction from ALL saved weights
- multiply each prediction by the number it got correct (i.e., a weighted vote) and take the sum over all predictions
- said another way: pick whichever prediction has the most votes

Voted perceptron learning

Vote

3

1

Training every time a mistake is made on an example:
- store the weights
- store the number of examples that set of weights got correct

107 108

111 112

Voted perceptron learning

- every time a mistake is made on an example:
 - store the weights (i.e. before changing for current example)
 - store the number of examples that set of weights got correct

Classify

- calculate the prediction from ALL saved weights
- multiply each prediction by the number it got correct (i.e α weighted vote) and take the sum over all predictions
- said another way: pick whichever prediction has the most votes

Any issues/concerns?

Voted perceptron learning

- every time a mistake is made on an example:
 - store the weights (i.e. before changing for current example)
 - store the number of examples that set of weights got correct

Classify

- calculate the prediction from ALL saved weights
- multiply each prediction by the number it got correct (i.e α weighted vote) and take the sum over all predictions
- said another way: pick whichever prediction has the most votes
 - 1. Can require a lot of storage
 - 2. Classifying becomes very, very expensive

114 113

Average perceptron

 $\overline{w_i} = \frac{3w_i^1 + 1w_i^2 + 5w_i^3 + 1w_i^4}{10}$

The final weights are the weighted average of the previous weights

 $w_1^4, w_2^4, ..., w_n^4, b^4$

How does this help us?

Average perceptron

The final weights are the weighted average of the previous weights

 $w_1^4, w_2^4, ..., w_n^4, b^4$ Can just keep a running average!

115

Perceptron learning algorithm

repeat until convergence (or for some # of iterations): for each training example $(f_1, f_2, ..., f_n, label)$:

$$prediction = b + \sum_{i=1}^{n} w_i f_i$$

if prediction * label \leq 0: // they don't agree for each w_i :

$$w_i = w_i + f_i^* \text{label}$$

b = b + label

Why is it called the "perceptron" learning algorithm if what it learns is a line? Why not "line learning" algorithm?

117

Our nervous system: the computer science view

the human brain is a large collection of interconnected neurons

a NEURON is a brain cell

- collect, process, and disseminate electrical signals
- Neurons are connected via synapses
- □ They FIRE depending on the conditions of the neighboring neurons

Node A Weight w Node B (neuron)

w is the strength of signal sent between A and B.

If A fires and w is positive, then A stimulates B.

If A fires and w is negative, then A inhibits B.

If a node is stimulated enough, then it also fires.

How much stimulation is required is determined by its threshold.

121 122

123 124

