
1/27/22

1

PERCEPTRON LEARNING

David Kauchak
CS 158 – Spring 2022

1

Admin

Assignment 1 grading

Assignment 2 due Sunday at midnight

Slack (I think everyone is on the channel)

2

Machine learning models

Some machine learning approaches make strong
assumptions about the data

¤ If the assumptions are true it can often lead to better
performance

¤ If the assumptions aren’t true, the approach can fail
miserably

Other approaches don’t make many assumptions about
the data

¤ This can allow us to learn from more varied data
¤ But, they are more prone to overfitting
¤ and generally require more training data

3

Data generating distribution

We are going to use the probabilistic model of learning

There is some probability distribution over example/label
pairs called the data generating distribution

Both the training data and the test set are generated
based on this distribution

What is a probability distribution?

4

1/27/22

2

Probability distribution

Describes how likely (i.e. probable) certain events are

- Describes probabilities for all possible events
- Probabilities are between 0 and 1 (inclusive)
- Sum of probabilities over all events is 1

5

data generating distribution

Training data Test set

data generating distribution

6

What is the data generating distribution?

7

What is the data generating distribution?

8

1/27/22

3

What is the data generating distribution?

9

What is the data generating distribution?

10

What is the data generating distribution?

11

What is the data generating distribution?

12

1/27/22

4

Actual model

13

Model assumptions

If you don’t have strong assumptions about the model,
it can take you a longer to learn

Assume now that our model of the blue class is two
circles

14

What is the data generating distribution?

15

What is the data generating distribution?

16

1/27/22

5

What is the data generating distribution?

17

What is the data generating distribution?

18

What is the data generating distribution?

19

Actual model

20

1/27/22

6

What is the data generating distribution?

Knowing the model beforehand
can drastically improve the
learning and the number of
examples required

21

What is the data generating distribution?

22

Make sure your assumption is correct, though!

23

Machine learning models

What are the model assumptions (if any) that k-NN
and decision trees make about the data?

Are there data sets that could never be learned
correctly by either?

24

1/27/22

7

k-NN model

K = 1

No model assumptions. Assumes that proximity relates to class

25

Decision tree model

label 1

label 2

label 3

Axis-aligned splits/cuts of the data

26

Bias

The “bias” of a model is how strong the model
assumptions are.

low-bias classifiers make minimal assumptions about
the data (k-NN and DT are generally considered low
bias)

high-bias classifiers make strong assumptions about
the data

27

Linear models

A strong high-bias assumption is linear separability:
¤ in 2 dimensions, can separate classes by a line

¤ in higher dimensions, need hyperplanes

A linear model is a model that assumes the data is linearly
separable

28

1/27/22

8

Hyperplanes

A hyperplane is a line/plane in a high-dimensional space

What defines a line?
What defines a hyperplane?

29

Defining a line

Any pair of values (w1,w2) defines a line through the origin:

0 = w1 f1 +w2 f2

f1

f2

30

Defining a line

Any pair of values (w1,w2) defines a line through the origin:

0 = w1 f1 +w2 f2

-2
-1
0
1
2

1
0.5
0
-0.5
-1

0 =1 f1 + 2 f2
f1

f2

31

Defining a line

Any pair of values (w1,w2) defines a line through the origin:

0 = w1 f1 +w2 f2

-2
-1
0
1
2

1
0.5
0
-0.5
-1

0 =1 f1 + 2 f2
f1

f2

32

1/27/22

9

Defining a line

Any pair of values (w1,w2) defines a line through the origin:

0 = w1 f1 +w2 f2

0 =1 f1 + 2 f2

We can also view it as the
line perpendicular to the
weight vector

w=(1,2)

(1,2)

f1

f2

33

Classifying with a line

0 =1 f1 + 2 f2

w=(1,2)

Mathematically, how can we classify points based on a line?

BLUE

RED

(1,1)

(1,-1)

f1

f2

34

Classifying with a line

0 =1 f1 + 2 f2

w=(1,2)

Mathematically, how can we classify points based on a line?

BLUE

RED

(1,1)

(1,-1)

1*1+ 2*1= 3(1,1):

1*1+ 2*−1= −1(1,-1):

The sign indicates which side of the line

f1

f2

35

Defining a line

Any pair of values (w1,w2) defines a line through the origin:

0 = w1 f1 +w2 f2

0 =1 f1 + 2 f2

How do we move the line off of the origin?

f1

f2

36

1/27/22

10

Defining a line

Any pair of values (w1,w2) defines a line through the origin:

a = w1 f1 +w2 f2

-2
-1
0
1
2

−1=1 f1 + 2 f2
f1

f2

37

Defining a line

Any pair of values (w1,w2) defines a line through the origin:

a = w1 f1 +w2 f2

-2
-1
0
1
2

0.5
0
-0.5
-1
-1.5

−1=1 f1 + 2 f2
f1

f2

Now intersects at -1

38

Linear models

A linear model in n-dimensional space (i.e. n features)
is define by n+1 weights:

In two dimensions, a line:

In three dimensions, a plane:

In n-dimensions, a hyperplane

0 = w1 f1 +w2 f2 + b (where b = -a)

0 = w1 f1 +w2 f2 +w3 f3 + b

0 = b+ wi fii=1

n
∑

39

Classifying with a linear model

We can classify with a linear model by checking the
sign:

Negative example

b+ wi fi > 0i=1

n
∑ Positive example

classifierf1, f2, …, fn
b+ wi fi < 0i=1

n
∑

40

1/27/22

11

Learning a linear model

Geometrically, we know what a linear model represents

Given a linear model (i.e. a set of weights and b) we can
classify examples

Training
Data

(data with labels)

lea
rn

How do we learn a
linear model?

41

Positive or negative?

NEGATIVE

42

Positive or negative?

NEGATIVE

43

Positive or negative?

POSITIVE

44

1/27/22

12

Positive or negative?

NEGATIVE

45

Positive or negative?

POSITIVE

46

Positive or negative?

POSITIVE

47

Positive or negative?

NEGATIVE

48

1/27/22

13

Positive or negative?

POSITIVE

49

A method to the madness

blue = positive

yellow triangles = positive

all others negative

How is this learning setup different than
the learning we’ve seen so far?

When might this arise?

50

Online learning algorithm

lea
rn

Only get to see one example at a time!

0

La
be

le
d

da
ta

51

Online learning algorithm

lea
rn

Only get to see one example at a time!

0

0

La
be

le
d

da
ta

52

1/27/22

14

Online learning algorithm

lea
rn

Only get to see one example at a time!

0

0

La
be

le
d

da
ta

1

53

Online learning algorithm

lea
rn

Only get to see one example at a time!

0

0

La
be

le
d

da
ta

1

1

54

Online learning algorithm

lea
rn

Only get to see one example at a time!

0

0

La
be

le
d

da
ta

1

1

…

55

Learning a linear classifier

f1

f2

w=(1,0)What does this model currently say?

56

1/27/22

15

Learning a linear classifier

f1

f2

w=(1,0)

POSITIVENEGATIVE

57

Learning a linear classifier

f1

f2

w=(1,0)

(-1,1)

Is our current guess:
right or wrong?

0 = w1 f1 +w2 f2

58

Learning a linear classifier

f1

f2

w=(1,0)

(-1,1)

0 = w1 f1 +w2 f2

1*−1+ 0*1= −1

1* f1 + 0* f2 =

predicts negative, wrong

Geometrically, how should
we update the model?

59

Learning a linear classifier

f1

f2

w=(1,0)

(-1,1)

0 = w1 f1 +w2 f2

1*−1+ 0*1= −1

1* f1 + 0* f2 =

Should move
this direction

60

1/27/22

16

A closer look at why we got it wrong

1*−1+ 0*1= −1

1* f1 + 0* f2 =

w1 w2

We’d like this value to be positive
since it’s a positive value

(-1, 1, positive)

Which of the weights contributed to the mistake?

61

A closer look at why we got it wrong

1*−1+ 0*1= −1

1* f1 + 0* f2 =

w1 w2

We’d like this value to be positive
since it’s a positive value

(-1, 1, positive)

contributed in the
wrong direction

could have contributed
(positive feature), but didn’t

How should we change the weights?

62

A closer look at why we got it wrong

1*−1+ 0*1= −1

1* f1 + 0* f2 =

w1 w2

We’d like this value to be positive
since it’s a positive value

(-1, 1, positive)

contributed in the
wrong direction

could have contributed
(positive feature), but didn’t

decrease increase
1 -> 0 0 -> 1

63

Learning a linear classifier

f1

f2

w=(0,1)

(-1,1)

0 = w1 f1 +w2 f2

Geometrically, this also makes sense!

64

1/27/22

17

Learning a linear classifier

f1

f2

w=(0,1)

(1,-1)

0 = w1 f1 +w2 f2

Is our current guess:
right or wrong?

65

Learning a linear classifier

f1

f2

w=(0,1)

(1,-1)

0 = w1 f1 +w2 f2

0*1+1*−1= −1

0* f1 +1* f2 =

predicts negative, correct

How should we update the model?

66

Learning a linear classifier

f1

f2

w=(0,1)

(1,-1)

0 = w1 f1 +w2 f2

Already correct… don’t change it!

0*1+1*−1= −1

0* f1 +1* f2 =

67

Learning a linear classifier

f1

f2

w=(0,1)

(-1,-1)

0 = w1 f1 +w2 f2

Is our current guess:
right or wrong?

68

1/27/22

18

Learning a linear classifier

f1

f2

w=(0,1)

(-1,-1)

0 = w1 f1 +w2 f2

0*−1+1*−1= −1

0* f1 +1* f2 =

predicts negative, wrong

Geometrically, how should
we update the model?

69

Learning a linear classifier

f1

f2

w=(0,1)

(-1,-1)

0 = w1 f1 +w2 f2

Should move
this direction

70

A closer look at why we got it wrong

0*−1+1*−1= −1

0* f1 +1* f2 =

w1 w2

We’d like this value to be positive
since it’s a positive value

(-1, -1, positive)

Which of the weights contributed to the mistake?

71

A closer look at why we got it wrong

0*−1+1*−1= −1

0* f1 +1* f2 =

w1 w2

We’d like this value to be positive
since it’s a positive value

(-1, -1, positive)

didn’t contribute,
but could have

contributed in the wrong
direction

How should we change the weights?

72

1/27/22

19

A closer look at why we got it wrong

0*−1+1*−1= −1

0* f1 +1* f2 =

w1 w2

We’d like this value to be positive
since it’s a positive value

(-1, -1, positive)

didn’t contribute,
but could have

contributed in the wrong
direction

decrease decrease
0 -> -1 1 -> 0

73

Learning a linear classifier

f1

f2

f1, f2, label

-1,-1, positive
-1, 1, positive
1, 1, negative
1,-1, negative

w=(-1,0)

74

Perceptron learning algorithm

repeat until convergence (or for some # of iterations):
for each training example (f1, f2, …, fn, label):

check if it’s correct based on the current model

if not correct, update all the weights:
if label positive and feature positive:

increase weight (increase weight = predict more positive)
else if label positive and feature negative:

decrease weight (decrease weight = predict more positive)
else if label negative and feature positive:

decrease weight (decrease weight = predict more negative)
else if label negative and feature negative:

increase weight (increase weight = predict more negative)

75

A trick…

if label positive and feature positive:

increase weight (increase weight = predict more positive)
else if label positive and feature negative:

decrease weight (decrease weight = predict more positive)

else if label negative and feature positive:
decrease weight (decrease weight = predict more negative)

else if label negative and negative weight:

increase weight (increase weight = predict more negative)

label * fi
1*1=1

1*-1=-1

-1*1=-1

-1*-1=1

76

1/27/22

20

A trick…

if label positive and feature positive:

increase weight (increase weight = predict more positive)
else if label positive and feature negative:

decrease weight (decrease weight = predict more positive)

else if label negative and feature positive:
decrease weight (decrease weight = predict more negative)

else if label negative and negative weight:

increase weight (increase weight = predict more negative)

label * fi
1*1=1

1*-1=-1

-1*1=-1

-1*-1=1

77

Perceptron learning algorithm

repeat until convergence (or for some # of iterations):
for each training example (f1, f2, …, fn, label):

check if it’s correct based on the current model

if not correct, update all the weights:

for each wi:

wi = wi + fi*label

b = b + label

How do we check if it’s correct?

78

Perceptron learning algorithm

repeat until convergence (or for some # of iterations):
for each training example (f1, f2, …, fn, label):

if prediction * label ≤ 0: // they don’t agree

for each wi:

wi = wi + fi*label

b = b + label

prediction = b+ wi fii=1

n
∑

79

Perceptron learning algorithm

repeat until convergence (or for some # of iterations):
for each training example (f1, f2, …, fn, label):

if prediction * label ≤ 0: // they don’t agree

for each wi:

wi = wi + fi*label

b = b + label

prediction = b+ wi fii=1

n
∑

Would this work for non-binary features, i.e. real-valued?

80

1/27/22

21

Your turn J

repeat until convergence (or for some # of iterations):

for each training example (f1, f2, …, fn, label):

if prediction * label ≤ 0: // they don’t agree

for each wi:

wi = wi + fi*label

prediction = wi fii=1

n
∑

f1

f2

(-1,1) (1,1)

(.5,-1)
(-1,-1)

1

23

4

- Repeat until convergence
- Keep track of w1, w2 as they change
- Redraw the line after each step

w = (1, 0)

81

Your turn J

f1

f2

(-1,1) (1,1)

(-1,-1)

w = (0, -1)

(.5,-1)

repeat until convergence (or for some # of iterations):

for each training example (f1, f2, …, fn, label):

if prediction * label ≤ 0: // they don’t agree

for each wi:

wi = wi + fi*label

prediction = wi fii=1

n
∑

82

Your turn J

f1

f2

(-1,1) (1,1)

(-1,-1)

w = (-1, 0)

(.5,-1)

repeat until convergence (or for some # of iterations):

for each training example (f1, f2, …, fn, label):

if prediction * label ≤ 0: // they don’t agree

for each wi:

wi = wi + fi*label

prediction = wi fii=1

n
∑

83

Your turn J

f1

f2

(-1,1) (1,1)

(-1,-1)

w = (-.5, -1)

(.5,-1)

repeat until convergence (or for some # of iterations):

for each training example (f1, f2, …, fn, label):

if prediction * label ≤ 0: // they don’t agree

for each wi:

wi = wi + fi*label

prediction = wi fii=1

n
∑

84

1/27/22

22

Your turn J

f1

f2

(-1,1) (1,1)

(-1,-1)

w = (-1.5, 0)

(.5,-1)

repeat until convergence (or for some # of iterations):

for each training example (f1, f2, …, fn, label):

if prediction * label ≤ 0: // they don’t agree

for each wi:

wi = wi + fi*label

prediction = wi fii=1

n
∑

85

Your turn J

f1

f2

(-1,1) (1,1)

(-1,-1)

w = (-1, -1)

(.5,-1)

repeat until convergence (or for some # of iterations):

for each training example (f1, f2, …, fn, label):

if prediction * label ≤ 0: // they don’t agree

for each wi:

wi = wi + fi*label

prediction = wi fii=1

n
∑

86

Your turn J

f1

f2

(-1,1) (1,1)

(-1,-1)

w = (-2, 0)

(.5,-1)

repeat until convergence (or for some # of iterations):

for each training example (f1, f2, …, fn, label):

if prediction * label ≤ 0: // they don’t agree

for each wi:

wi = wi + fi*label

prediction = wi fii=1

n
∑

87

Your turn J

f1

f2

(-1,1) (1,1)

(-1,-1)

w = (-1.5, -1)

(.5,-1)

repeat until convergence (or for some # of iterations):

for each training example (f1, f2, …, fn, label):

if prediction * label ≤ 0: // they don’t agree

for each wi:

wi = wi + fi*label

prediction = wi fii=1

n
∑

88

1/27/22

23

Which line will it find?

89

Which line will it find?

Only guaranteed to find some
line that separates the data

90

Convergence

repeat until convergence (or for some # of iterations):
for each training example (f1, f2, …, fn, label):

if prediction * label ≤ 0: // they don’t agree

for each wi:

wi = wi + fi*label

b = b + label

prediction = b+ wi fii=1

n
∑

Why do we also have the “some # iterations” check?

91

Handling non-separable data

If we ran the algorithm on this it would never converge!

92

1/27/22

24

Convergence

repeat until convergence (or for some # of iterations):
for each training example (f1, f2, …, fn, label):

if prediction * label ≤ 0: // they don’t agree

for each wi:

wi = wi + fi*label

b = b + label

prediction = b+ wi fii=1

n
∑

Also helps avoid overfitting!
(This is harder to see in 2-D examples, though)

93

Ordering

repeat until convergence (or for some # of iterations):
for each training example (f1, f2, …, fn, label):

if prediction * label ≤ 0: // they don’t agree

for each wi:

wi = wi + fi*label

b = b + label

prediction = b+ wi fii=1

n
∑

What order should we traverse the examples?
Does it matter?

94

Order matters

What would be a good/bad order?

95

Order matters: a bad order

96

1/27/22

25

Order matters: a bad order

97

Order matters: a bad order

98

Order matters: a bad order

99

Order matters: a bad order

100

1/27/22

26

Order matters: a bad order

101

Order matters: a bad order

Solution?

102

Ordering

repeat until convergence (or for some # of iterations):
randomize order of training examples

for each training example (f1, f2, …, fn, label):

if prediction * label ≤ 0: // they don’t agree

for each wi:

wi = wi + fi*label

b = b + label

prediction = b+ wi fii=1

n
∑

103

Improvements

What will happen when we examine this example?

(-1,1)

w = (-1, 0)

104

1/27/22

27

Improvements

Does this make sense? What if we had previously gone through
ALL of the other examples correctly?

(-1,1)

w = (0, -1)

105

Improvements

Maybe just move it slightly in the direction of correction

106

Voted perceptron learning

Training
- every time a mistake is made on an example:
- store the weights (i.e. before changing for current example)

- store the number of examples that set of weights got correct

Classify

- calculate the prediction from ALL saved weights
- multiply each prediction by the number it got correct (i.e., a

weighted vote) and take the sum over all predictions

- said another way: pick whichever prediction has the most votes

107

Voted perceptron learning

3

Vote

1

1

5

Training
every time a mistake is made on an example:

- store the weights
- store the number of examples that set
of weights got correct

108

1/27/22

28

Voted perceptron learning

3

Vote

1

1

5

Classify

109

Voted perceptron learning

3

Vote

1

1

5

Classify

Prediction

POSITIVE

NEGATIVE

POSITIVE

NEGATIVE

Decision?

110

Voted perceptron learning

3

Vote

1

1

5

Classify

Prediction

POSITIVE

NEGATIVE

POSITIVE

NEGATIVE
NEGATIVE

8: negative
2: positive

111

Voted perceptron learning

Works much better in practice

Avoids overfitting, though it can still happen

Avoids big changes in the result by examples
examined at the end of training

112

1/27/22

29

Voted perceptron learning

Training

- every time a mistake is made on an example:
- store the weights (i.e. before changing for current example)
- store the number of examples that set of weights got correct

Classify
- calculate the prediction from ALL saved weights

- multiply each prediction by the number it got correct (i.e a weighted vote)
and take the sum over all predictions

- said another way: pick whichever prediction has the most votes

Any issues/concerns?

113

Voted perceptron learning

Training

- every time a mistake is made on an example:
- store the weights (i.e. before changing for current example)
- store the number of examples that set of weights got correct

Classify
- calculate the prediction from ALL saved weights

- multiply each prediction by the number it got correct (i.e a weighted vote)
and take the sum over all predictions

- said another way: pick whichever prediction has the most votes

1. Can require a lot of storage
2. Classifying becomes very, very expensive

114

Average perceptron

w11,w
1
2,...,w

1
n,b

13

Vote

1

1

5

w2
1,w

2
2,...,w

2
n,b

2

w3
1,w

3
2,...,w

3
n,b

3

w4
1,w

4
2,...,w

4
n,b

4

wi =
3w1i +1w

2
i + 5w

3
i +1w

4
i

10

The final weights are the
weighted average of the
previous weights

How does this help us?

115

Average perceptron

w11,w
1
2,...,w

1
n,b

13

Vote

1

1

5

w2
1,w

2
2,...,w

2
n,b

2

w3
1,w

3
2,...,w

3
n,b

3

w4
1,w

4
2,...,w

4
n,b

4

The final weights are the
weighted average of the
previous weights

Can just keep a running average!

wi =
3w1i +1w

2
i + 5w

3
i +1w

4
i

10

116

1/27/22

30

Perceptron learning algorithm

repeat until convergence (or for some # of iterations):
for each training example (f1, f2, …, fn, label):

if prediction * label ≤ 0: // they don’t agree

for each wi:

wi = wi + fi*label

b = b + label

prediction = b+ wi fii=1

n
∑

Why is it called the “perceptron” learning algorithm if
what it learns is a line? Why not “line learning” algorithm?

117

Our Nervous System

Synapses

Axon

Dendrites

Synapses
+

+

+
-
-

(weights)

Nodes

Neuron

118

Our nervous system: the computer science view

the human brain is a large collection
of interconnected neurons

a NEURON is a brain cell
¤ collect, process, and disseminate

electrical signals
¤ Neurons are connected via synapses
¤ They FIRE depending on the

conditions of the neighboring neurons

Synapses

Axon

Dendrites

Synapses
+

+

+
-
-

(weights)

Nodes

119

w is the strength of signal sent between A and B.

If A fires and w is positive, then A stimulates B.

If A fires and w is negative, then A inhibits B.

If a node is stimulated enough, then it also fires.

How much stimulation is required is determined by its threshold.

Weight wNode A Node B

(neuron) (neuron)

120

1/27/22

31

Neural Networks

Node (Neuron)

Edge (synapses)

121

Output y

Input x1

Input x2

Input x3

Input x4

Weight w1

Weight w2

Weight w3

Weight w4

A Single Neuron/Perceptron

€

in = wi
i
∑ xi

€

∑

€

g(in)

threshold function

122

Possible threshold functions

hard threshold:
if in (the sum of weights) >= threshold 1
else 0 otherwise

Sigmoid

€

g(x) =
1

1+ e−ax

123

1

-1

1

0.5

A Single Neuron/Perceptron

?
Threshold of 1

1

1

0

1

124

1/27/22

32

1

-1

1

0.5

0
Threshold of 1

1

1

0

1

Weighted sum is 0.5,
which is not equal or
larger than the threshold

A Single Neuron/Perceptron

125

1

-1

1

0.5

?
Threshold of 1

1

0

0

1

A Single Neuron/Perceptron

126

1

-1

1

0.5

Threshold of 1

1

0

0

1

A Single Neuron/Perceptron

1
Weighted sum is 1.5,
which is larger than the
threshold

127

1

-1

1

0.5

Threshold of 1

1

0

0

1

A Single Neuron/Perceptron

!
!"#

$
𝑤𝑖𝑓𝑖 > 𝑎

b + ∑!"#$ 𝑤𝑖𝑓𝑖 > 0
where b = -a

128

