

1

Machine learning models

Some machine learning approaches make strong assumptions about the data

- If the assumptions are true it can often lead to better performance
\square If the assumptions aren't true, the approach can fail miserably

Other approaches don't make many assumptions about the data

- This can allow us to learn from more varied data
\square But, they are more prone to overfitting
\square and generally require more training data

Admin

Assignment 1 grading

Assignment 2 due Sunday at midnight

Slack (I think everyone is on the channel)

Data generating distribution

We are going to use the probabilistic model of learning

There is some probability distribution over example/label pairs called the data generating distribution

Both the training data and the test set are generated based on this distribution

> What is a probability distribution?

4

5

7

6

8

11

12

13

Model assumptions

If you don't have strong assumptions about the model, it can take you a longer to learn

Assume now that our model of the blue class is two circles

14

16

19

20

21

23

22

Machine learning models

What are the model assumptions (if any) that k-NN
and decision trees make about the data?
Are there data sets that could never be learned
correctly by either?

24

25

Bias

The "bias" of a model is how strong the model assumptions are.
low-bias classifiers make minimal assumptions about the data ($k-\mathrm{NN}$ and DT are generally considered low bias)
high-bias classifiers make strong assumptions about the data

27

26

28

29

Defining a line

Any pair of values $\left(w_{1}, w_{2}\right)$ defines a line through the origin:
$0=w_{1} f_{1}+w_{2} f_{2}$
$0=1 f_{1}+2 f_{2}$
$\begin{array}{ll}-2 & 1 \\ -1 & 0.5 \\ 0 & 0 \\ 1 & -0.5 \\ 2 & -1\end{array}$

31

30

32

33

35

34

36

37

Linear models

A linear model in n-dimensional space (i.e. n features) is define by $n+1$ weights:

In two dimensions, a line:

$$
0=w_{1} f_{1}+w_{2} f_{2}+b \quad(\text { where } \mathrm{b}=-\mathrm{a})
$$

In three dimensions, a plane:

$$
0=w_{1} f_{1}+w_{2} f_{2}+w_{3} f_{3}+b
$$

In n-dimensions, a hyperplane

$$
0=b+\sum_{i=1}^{n} w_{i} f_{i}
$$

38

Classifying with a linear model

We can classify with a linear model by checking the sign:
$f_{1}, f_{2}, \ldots, f_{n} \quad \square$ classifier
$b+\sum_{i=1}^{n} w_{i} f_{i}>0$ Positive example $b+\sum_{i=1}^{n} w_{i} f_{i}<0$ Negative example

41

43

44

45

48

49

51

50

52

53

55

54

56

57

59

58

60

61

63

62

64

65

67

66

68

69

71

70

72

73

Perceptron learning algorithm

repeat until convergence (or for some \# of iterations):
for each training example ($f_{1}, f_{2}, \ldots, f_{n}$, label):
check if it's correct based on the current model
if not correct, update all the weights:
if label positive and feature positive:
increase weight (increase weight = predict more positive) else if label positive and feature negative: decrease weight (decrease weight = predict more positive) else if label negative and feature positive: decrease weight (decrease weight = predict more negative) else if label negative and feature negative: increase weight (increase weight = predict more negative)

74

A trick...	
if label positive and feature positive: increase weight (increase weight = predict more positive) else if label positive and feature negative: decrease weight (decrease weight = predict more positive) else if label negative and feature positive: decrease weight (decrease weight = predict more negative) else if label negative and negative weight: increase weight (increase weight = predict more negative)	$\begin{gathered} \text { label } * \boldsymbol{f}_{\boldsymbol{i}} \\ \hline 1 * 1=1 \\ 1 *-1=-1 \\ -1 * 1=-1 \\ -1 *-1=1 \end{gathered}$

77

Perceptron learning algorithm
repeat until convergence (or for some \# of iterations):
for each training example ($f_{1}, f_{2}, \ldots, f_{n}$, label):
prediction $=b+\sum_{i=1}^{n} w_{i} f_{i}$
if prediction * label ≤ 0 : // they don't agree
for each w_{i}
$w_{i}=w_{i}+f_{i}^{*}$ label
$b=b+$ label

Perceptron learning algorithm

repeat until convergence (or for some \# of iterations):
for each training example ($f_{1}, f_{2}, \ldots, f_{n}$, label):
check if it's correct based on the current model
if not correct, update all the weights:
for each w_{i} :
$w_{i}=w_{i}+f_{i}^{*}$ label
$b=b+$ label
How do we check if it's correct?

78

Perceptron learning algorithm

repeat until convergence (or for some \# of iterations):
for each training example ($f_{1}, f_{2}, \ldots, f_{n}$, label $)$: prediction $=b+\sum_{i=1}^{n} w_{i} f_{i}$
if prediction * label ≤ 0 : // they don't agree
for each w_{i} :
$w_{i}=w_{i}+f_{i}^{*}$ label
$b=b+$ label

Would this work for non-binary features, i.e. real-valued?

80

81

83

82

84

85

87

86

88

89

90

Handling non-separable data

92

93

95

Ordering

repeat until convergence (or for some \# of iterations):
for each training example ($f_{1}, f_{2}, \ldots, f_{n}$, label):
prediction $=b+\sum_{i=1}^{n} w_{i} f_{i}$
if prediction * label ≤ 0 : // they don't agree for each w_{i} :
$w_{i}=w_{i}+f_{i}$ *label
$b=b+$ label

What order should we traverse the examples? Does it matter?

94

96

101

103

105

Voted perceptron learning

Training

every time a mistake is made on an example: store the weights (i.e. before changing for current example) store the number of examples that set of weights got correct

Classify

calculate the prediction from ALL saved weights multiply each prediction by the number it got correct (i.e., a weighted vote) and take the sum over all predictions said another way: pick whichever prediction has the most votes

108

109

111

110

Voted perceptron learning

Works much better in practice

Avoids overfitting, though it can still happen

Avoids big changes in the result by examples examined at the end of training

Voted perceptron learning

Training
every time a mistake is made on an example:
store the weights (i.e. before changing for current example)
store the number of examples that set of weights got correct

Classify

calculate the prediction from ALL saved weights
multiply each prediction by the number it got correct (i.e a weighted vote) and take the sum over all predictions
said another way: pick whichever prediction has the most votes

Any issues/concerns?
113

115

Voted perceptron learning

Training

every time a mistake is made on an example:
store the weights (i.e. before changing for current example)
store the number of examples that set of weights got correct

Classify
calculate the prediction from ALL saved weights
multiply each prediction by the number it got correct (i.e a weighted vote) and take the sum over all predictions
said another way: pick whichever prediction has the most votes

1. Can require a lot of storage
2. Classifying becomes very, very expensive

114

Perceptron learning algorithm

repeat until convergence (or for some \# of iterations):
for each training example ($f_{1}, f_{2}, \ldots, f_{n}$, label):
prediction $=b+\sum_{i=1}^{n} w_{i} f_{i}$
if prediction * label ≤ 0 : // they don't agree
for each w_{i} :
$w_{i}=w_{i}+f_{i}{ }^{*}$ |abel
$b=b+$ label
Why is it called the "perceptron" learning algorithm if what it learns is a line? Why not "line learning" algorithm?

119

118

w is the strength of signal sent between A and B.

If A fires and w is positive, then A stimulates B.

If A fires and w is negative, then A inhibits B.

If a node is stimulated enough, then it also fires.

How much stimulation is required is determined by its threshold.

123

124

128

