

Admin

Assignment 9

Midterm 2

Final project
Monday (4/18) submit project proposal

2

Ensemble learning

Basic idea: if one classifier works well, why not use multiple classifiers!

Benefits of ensemble learning

Assume each classifier makes a mistake with some probability (e.g. 0.4, that is a 40% error rate)

model 1	model 2	model 3	prob
С	С	С	.6*.6*.6=0.216
С	С	Ι	.6*.6*.4=0.144
С	Ι	С	.6*.4*.6=0.144
С	Ι	Ι	.6*.4*.4=0.096
Ι	С	С	.4*.6*.6=0.144
Ι	С	Ι	.4*.6*.4=0.096
Ι	Ι	С	.4*.4*.6=0.096
Ι	Ι	Ι	.4*.4*.4=0.064

12

11

Benefits of ensemble learning

m classifiers in general, for r = probability of mistake for individual classifier:

$$p(error) = \sum_{i=(m+1)/2}^{m} \binom{m}{i} r^{i} (1-r)^{m-i}$$

(cumulative probability distribution for the binomial distribution)

boosting: basic algorithm

Training:

start with equal example weights

for some number of iterations:

- learn a weak classifier and save
- change the example weights

Classify:

- get prediction from all learned weak classifiers
- weighted vote based on how well the weak classifier did when it was trained (i.e. in relation to training error)

46

47

Notation x_i example i in the training data w_i weight for example i, we will enforce:
 $w_i \ge 0$
 $\sum_{i=1}^{n} w_i = 1$ classifier_k(x_i)+1/-1 prediction of classifier k example i

54

AdaBoost: train

for k = 1 to iterations:

 $classifier_k = learn a$ weak classifier based on weights

calculate weighted error for this classifier

calculate "score" for this classifier:

 $\alpha_k = \frac{1}{2} \log \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$

 $\varepsilon_k = \sum_{i=1}^n w_i * 1[label_i \neq classifier_k(x_i)]$

change the example weights $w_i = \frac{1}{Z} w_i \exp(-\alpha_k * label_i * classifier_k(x_i))$

57

55

AdaBoost: train

for k = 1 to iterations:

- classifier_k = learn a weak classifier based on weights
- weighted error for this classifier is:
- "score" or weight for this classifier is:
- change the example weights

What can we use as a classifier?

83

AdaBoost: train

for k = 1 to iterations:

- classifier_k = learn a weak classifier based on weights
 weighted error for this classifier is:
- "score" or weight for this classifier is:
- change the example weights
- Anything that can train on weighted examples
- For most applications, must be fast! Why?

84

AdaBoost: train

for k = 1 to iterations:

- classifier_k = learn a weak classifier based on weights
- weighted error for this classifier is:
- "score" or weight for this classifier is:
- change the example weights
- Anything that can train on weighted examples
- For most applications, must be fast!
- Each iteration we have to train a new classifier

Boosted decision stumps

One of the most common classifiers to use is a decision tree:

- can use a shallow (2-3 level tree)
- even more common is a 1-level tree
- called a decision stump ⁽ⁱ⁾
- asks a question about a single feature

What does the decision boundary look like for a decision stump?

Boosted decision stumps

One of the most common classifiers to use is a decision tree:

- can use a shallow (2-3 level tree)
- even more common is a 1-level tree
- called a decision stump \bigcirc
- asks a question about a single feature

What does the decision boundary look like for boosted decision stumps?

87

Boosted decision stumps

One of the most common classifiers to use is a decision tree:

- can use a shallow (2-3 level tree)
- even more common is a 1-level tree
- called a decision stump 😳
- asks a question about a single feature
- Linear classifier!
- Each stump defines the weight for that dimension
- If you learn multiple stumps for that dimension then it's the weighted average

Adaboost application example: face detection

