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Admin

Assignment 9

Midterm 2

Final project
¤ Monday (4/18) submit project proposal
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Ensemble learning

Basic idea: if one classifier works well, why not use 
multiple classifiers!
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Ensemble learning

Basic idea: if one classifier works well, why not use 
multiple classifiers!

Training
Data

model 1learning alg

Training

learning alg

…

model 2

learning alg model m
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Ensemble learning

Basic idea: if one classifier works well, why not use 
multiple classifiers!

model 1

Testing

model 2

model m

example to 
label

…

prediction 1

prediction 2

prediction m

How do we decide on 
the final prediction?

6

Ensemble learning

Basic idea: if one classifier works well, why not use 
multiple classifiers!

Testing

prediction 1

prediction 2

prediction m

…
- take majority vote
- if they output probabilities, 

take a weighted vote

How does having multiple 
classifiers help?
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Benefits of ensemble learning

model 1

model 2

Assume each classifier makes a mistake with some 
probability (e.g. 0.4, that is a 40% error rate)

model 3

Assuming the decisions made between 
classifiers are independent, what will be the 
probability that we make a mistake (i.e. error 
rate) with three classifiers for a binary 
classification problem?
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Benefits of ensemble learning

Assume each classifier makes a mistake with some 
probability (e.g. 0.4, that is a 40% error rate)

model 1 model 2 model 3 prob

C C C .6*.6*.6=0.216
C C I .6*.6*.4=0.144
C I C .6*.4*.6=0.144
C I I .6*.4*.4=0.096
I C C .4*.6*.6=0.144
I C I .4*.6*.4=0.096
I I C .4*.4*.6=0.096
I I I .4*.4*.4=0.064

9



4/14/22

3

Benefits of ensemble learning

Assume each classifier makes a mistake with some 
probability (e.g. 0.4, that is a 40% error rate)

model 1 model 2 model 3 prob

C C C .6*.6*.6=0.216
C C I .6*.6*.4=0.144
C I C .6*.4*.6=0.144
C I I .6*.4*.4=0.096
I C C .4*.6*.6=0.144
I C I .4*.6*.4=0.096
I I C .4*.4*.6=0.096
I I I .4*.4*.4=0.064

0.096+
0.096+
0.096+
0.064 = 
35% error! 
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Benefits of ensemble learning

3 classifiers in general, for r = probability of mistake 
for individual classifier:

p(error) = 3r2 (1− r)+ r3

r p(error)

0.4 0.35
0.3 0.22
0.2 0.10
0.1 0.028
0.05 0.0073

binomial distribution
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Benefits of ensemble learning

5 classifiers in general, for r = probability of mistake 
for individual classifier:

p(error) =10r3(1− r)2 + 5r4 (1− r)+ r5

r p(error)
3 classifiers

p(error)
5 classifiers

0.4 0.35 0.32
0.3 0.22 0.16
0.2 0.10 0.06
0.1 0.028 0.0086
0.05 0.0073 0.0012
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Benefits of ensemble learning

m classifiers in general, for r = probability of mistake 
for individual classifier:

p(error) = m
i

!

"
#

$

%
&ri (1− r)m−i

i=(m+1)/2

m

∑

(cumulative probability distribution 
for the binomial distribution)

13
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Given enough classifiers…
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∑

number of classifiers
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What is the catch?

model 1

model 2

Assume each classifier makes a mistake with some 
probability (e.g. 0.4, that is a 40% error rate)

model 3

Assuming the decisions made between 
classifiers are independent, what will be the 
probability that we make a mistake (i.e. error 
rate) with three classifiers for a binary 
classification problem?
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What is the catch?

model 1

model 2

Assume each classifier makes a mistake with some 
probability (e.g. 0.4, that is a 40% error rate)

model 3

Assuming the decisions made between 
classifiers are independent, what will be the 
probability that we make a mistake (i.e. error 
rate) with three classifiers for a binary 
classification problem?
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Obtaining independent classifiers

Where do we get m independent classifiers?

Training
Data

model 1learning alg

learning alg

…

model 2

learning alg model m

17
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Idea 1: different learning methods

decision tree

k-nn

perceptron

naïve bayes

gradient descent 
variant 1

gradient descent 
variant 2

…

Pros/cons?

Training
Data

model 1learning alg

learning alg

…

model 2

learning alg model m
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Idea 1: different learning methods

Pros:
¤ Lots of existing classifiers already
¤ Can work well for some problems

Cons/concerns:
¤ Often, classifiers are not independent, that is, they 

make the same mistakes!
n e.g. many of these classifiers are linear models
n voting won’t help us if they’re making the same mistakes

19

Idea 2: split up training data

Training
Data

model 1learning alg

…

part 1

…

model 2learning algpart 2

model mlearning algpart m

Use the same learning algorithm, but train on different 
parts of the training data
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Idea 2: split up training data

Pros:
¤ Learning from different data, so can’t overfit to same 

examples

¤ Easy to implement
¤ fast

Cons/concerns:
¤ Each classifier is only training on a small amount of data

¤ Not clear why this would do any better than training on full 
data and using good regularization

21
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Idea 3: bagging

Training
Data

model 1learning alg

…

…

model mlearning alg

Training
Data 1

Training
Data m

22

data generating distribution

Training data Test set

data generating distribution

23

Ideal situation

Training data 1

data generating distribution

Training data 2

…

24

bagging

Training data

“Training” data 1

…

“Training” data 2

Use training data as a 
proxy for the data 
generating distribution

25
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sampling with replacements

Training data

“Training” data 1
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sampling with replacements

Training data

“Training” data 1

pick a random example from the 
real training data
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sampling with replacements

Training data

“Training” data 1

add it to the new “training” data

28

sampling with replacements

Training data

“Training” data 1

put it back (i.e. leave it) in the 
original training data

29
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sampling with replacements

Training data

“Training” data 1

pick another random example
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sampling with replacements

Training data

“Training” data 1

pick another random example

31

sampling with replacements

Training data

“Training” data 1

keep going until you’ve created 
a new “training” data set 

32

bagging

create m “new” training data sets by sampling with 
replacement from the original training data set 
(called m “bootstrap” samples)

train a classifier on each of these data sets

to classify, take the majority vote from the m classifiers

33
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bagging concerns

…

Training
Data 1

Training
Data m

Training
Data

Won’t these all be 
basically the same?

34

bagging concerns

Training data

For a data set of size n, what is the probability 
that a given example will NOT be select in a 
“new” training set sampled from the original?
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bagging concerns

Training data

What is the probability it isn’t chosen the first time?

1−1/ n

36

bagging concerns

Training data

What is the probability it isn’t chosen the any of 
the n times?

(1−1/ n)n

Each draw is independent and 
has the same probability

37
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probability of overlap
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bagging overlap

…
Training
Data 1

Training
Data m

Training
Data

Won’t these all be 
basically the same?

On average, a randomly 
sampled data set will 
only contain 63% of the 
examples in the original

39

When does bagging work

Let’s say 10% of our examples are noisy (i.e. don’t 
provide good information)

For each of the “new” data set, what proportion of noisy 
examples will they have?

¤ They’ll still have ~10% of the examples as noisy
¤ However, these examples will only represent about two-

thirds of the original noisy examples

For some classifiers that have trouble with noisy classifiers, 
this can help
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When does bagging work

Bagging tends to reduce the variance of the classifier

By voting, the classifiers are more robust to noisy 
examples

Bagging is most useful for classifiers that are:
¤ Unstable: small changes in the training set produce very 

different models
¤ Prone to overfitting

Often has similar effect to regularization

41
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Idea 4: boosting

Data Label

0

0

1

1

0

training data

Weight
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0.2
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0.2

0.2

Data Label

0

0

1
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0

“training” data 2

0.1

0.1

0.4

0.1

0.3

Data Label

0

0

1

1

0

“training” data 3

0.05
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0.2

0.05

0.5

Weight Weight
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“Strong” learner

Given
¨ a reasonable amount of training data
¨ a target error rate ε
¨ a failure probability p

A strong learning algorithm will produce a classifier 
with error rate <ε with probability 1-p

43

“Weak” learner

Given
¨ a reasonable amount of training data
¨ a failure probability p

A weak learning algorithm will produce a classifier 
with error rate < 0.5 with probability 1-p

Weak learners are much easier to create!

44

weak learners for boosting

Data Label

0

0

1

1

0

Weight

0.2

0.2

0.2

0.2

0.2

weak learning 
algorithm

weak classifier

Need a weak learning algorithm that 
can handle weighted examples

Which of our algorithms can 
handle weights?

45
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boosting: basic algorithm

Training:
start with equal example weights

for some number of iterations:
- learn a weak classifier and save
- change the example weights

Classify:
- get prediction from all learned weak classifiers
- weighted vote based on how well the weak classifier 

did when it was trained (i.e. in relation to training error)

46

boosting basics

E1 E2 E3 E4 E5Examples:

Weights:

Start with equal weighted examples

Learn a weak classifier: weak 1

47

Boosting

E1 E2 E3 E4 E5Examples:

Weights:

weak 1
We want to reweight the examples and then 
learn another weak classifier

How should we change the example weights?

classified correct classified incorrect

48

Boosting

E1 E2 E3 E4 E5Examples:

Weights:

- decrease the weight for those we’re getting correct
- increase the weight for those we’re getting incorrect

49
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Boosting

E1 E2 E3 E4 E5Examples:

Weights:

Learn another weak classifier: weak 2

50

Boosting

E1 E2 E3 E4 E5Examples:

Weights:

weak 2

51

Boosting

E1 E2 E3 E4 E5Examples:

Weights:

- decrease the weight for those we’re getting correct
- increase the weight for those we’re getting incorrect

52

Classifying

weak 2

weak 1 prediction 1

prediction 2

…

weighted vote based on 
how well they classify the 
training data

weak_2_vote > weak_1_vote 
since it got more right

53
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Notation

xi example i in the training data

wi weight for example i, we will enforce:

classifierk(xi) +1/-1 prediction of classifier k example i

wi ≥ 0

wii=1

n
∑ =1

54

AdaBoost: train

for k = 1 to iterations:
- classifierk = learn a weak classifier based on weights
- calculate weighted error for this classifier

- calculate “score” for this classifier:

- change the example weights

αk =
1
2
log 1−εi

εi

"

#
$

%

&
'

εk = wi *1[labeli ≠ classifierk (xi )]i=1

n
∑

wi =
1
Z
wi exp −αk * labeli *classifierk (xi )( )
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AdaBoost: train

classifierk = learn a weak classifier based on weights

weighted error for this classifier is:

εk = wi *1[labeli ≠ classifierk (xi )]i=1

n
∑

What does this say?

56

AdaBoost: train

classifierk = learn a weak classifier based on weights

weighted error for this classifier is:

prediction

did we get the example wrong

weighted sum of the errors/mistakes

What is the range 
of possible values?

εk = wi *1[labeli ≠ classifierk (xi )]i=1

n
∑

57
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AdaBoost: train

classifierk = learn a weak classifier based on weights

weighted error for this classifier is:

prediction

did we get the example wrong

weighted sum of the errors/mistakes

Between 0 (if we 
get all examples 
right) and 1 (if we 
get them all wrong)

εk = wi *1[labeli ≠ classifierk (xi )]i=1

n
∑

58

AdaBoost: train

classifierk = learn a weak classifier based on weights

“score” or weight for this classifier is:

αk =
1
2
log 1−εi

εi

"

#
$

%

&
'

What does this look like (specifically for errors 
between 0 and 1)?

59

AdaBoost: train

αk =
1
2
log 1−εi

εi

"

#
$

%

&
'

- ranges from +∞ to -∞
- for most reasonable values: ranges from ~1 to -1
- errors of 50% = 0
- error > 50% = positive error < 50% = negative

-1 .5

-1

-0 .5

0

0 .5

1

1 .5

0 0 .05 0 .1 0 .15 0 .2 0 .25 0 .3 0 .35 0 .4 0 .45 0 .5 0 .55 0 .6 0 .65 0 .7 0 .75 0 .8 0 .85 0 .9 0 .95
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AdaBoost: classify

classify(x) = sign αk *classifierk (x)
k=1

iterations

∑
"

#
$

%

&
'

What does this do?

61
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AdaBoost: classify

classify(x) = sign αk *classifierk (x)
k=1

iterations

∑
"

#
$

%

&
'

The weighted vote of the learned classifiers 
weighted by α (remember α generally varies 
from ~1 to -1 training error)

What happens if a classifier has error >50%

62

AdaBoost: classify

classify(x) = sign αk *classifierk (x)
k=1

iterations

∑
"

#
$

%

&
'

The weighted vote of the learned classifiers 
weighted by α (remember α generally varies 
from ~1 to -1 training error)

We vote the opposite!

63

AdaBoost: train, updating the weights

update the example weights

wi =
1
Z
wi exp −αk * labeli *classifierk (xi )( )

Remember, we want to enforce:

wii=1

n
∑ =1

wi ≥ 0

Z is called the normalizing constant. It is used 
to make sure that the weights sum to 1

What should it be?

64

AdaBoost: train

update the example weights

wi =
1
Z
wi exp −αk * labeli *classifierk (xi )( )

Remember, we want to enforce:

wii=1

n
∑ =1

wi ≥ 0

normalizing constant (i.e. the sum of the “new” wi):

Z = wi exp −αk * labeli *classifierk (xi )( )
i=1

n

∑

65
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AdaBoost: train

update the example weights

wi =
1
Z
wi exp −αk * labeli *classifierk (xi )( )

What does this do?

66

AdaBoost: train

update the example weights

wi =
1
Z
wi exp −αk * labeli *classifierk (xi )( )

correct        positive
incorrect     negative

correct
incorrect ?

67

AdaBoost: train

update the example weights

wi =
1
Z
wi exp −αk * labeli *classifierk (xi )( )

correct small value
incorrect large value

Note: only change weights based on current 
classifier (not all previous classifiers)

correct        positive
incorrect     negative

68

AdaBoost: train

update the example weights

wi =
1
Z
wi exp −αk * labeli *classifierk (xi )( )

What does the α do? 

69
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AdaBoost: train

update the example weights

wi =
1
Z
wi exp −αk * labeli *classifierk (xi )( )

What does the α do? 

If the classifier was good (<50% error) α is positive:
trust classifier output and move as normal

If the classifier was bad (>50% error) α is negative
classifier is so bad, consider opposite prediction of 
classifier

70

AdaBoost justification

update the example weights

wi =
1
Z
wi exp −αk * labeli *classifierk (xi )( )

Does this look like anything we’ve seen before?

72

AdaBoost justification

update the example weights

wi =
1
Z
wi exp −αk * labeli *classifierk (xi )( )

Exponential loss!

l(y, y ') = exp(−yy ')

AdaBoost turns out to be another approach for 
minimizing the exponential loss!

73

Other boosting variants

Loss

Correct

loss
Mistakes

Brownboost

Logitboost
Adaboost = )( xwye •−

0-1 loss

74



4/14/22

19

Boosting example

Start with equal weighted data set

75

Boosting example

h => p(error) = 0.5  it is at chance

weak learner = line

What would be the best line 
learned on this data set?

76

Boosting example

This one seems to be the best
This is a ‘weak classifier’: It performs slightly better than chance.

How should we reweight 
examples?

77

Boosting example

reds on this side get more weight
blues on this side get less weight 

reds on this side get less weight
blues on this side get more weight 

What would be the best line 
learned on this data set?

78
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Boosting example

How should we reweight 
examples?

79

Boosting example

What would be the best line 
learned on this data set?

80

Boosting example

81

Boosting example

The strong (non- linear) classifier is built as the 
combination of all the weak (linear) classifiers.

f1 f2

f3

f4

82
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AdaBoost: train

for k = 1 to iterations:
- classifierk = learn a weak classifier based on weights
- weighted error for this classifier is:
- “score” or weight for this classifier is:
- change the example weights

What can we use as a classifier?

83

AdaBoost: train

for k = 1 to iterations:
- classifierk = learn a weak classifier based on weights
- weighted error for this classifier is:
- “score” or weight for this classifier is:
- change the example weights

- Anything that can train on weighted examples
- For most applications, must be fast!

Why?

84

AdaBoost: train

for k = 1 to iterations:
- classifierk = learn a weak classifier based on weights
- weighted error for this classifier is:
- “score” or weight for this classifier is:
- change the example weights

- Anything that can train on weighted examples
- For most applications, must be fast!

- Each iteration we have to train a new classifier

85

Boosted decision stumps

One of the most common classifiers to use is a decision 
tree:

- can use a shallow (2-3 level tree)
- even more common is a 1-level tree

- called a decision stump J
- asks a question about a single feature

What does the decision boundary look like for a 
decision stump?

86
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Boosted decision stumps

One of the most common classifiers to use is a decision 
tree:

- can use a shallow (2-3 level tree)
- even more common is a 1-level tree

- called a decision stump J
- asks a question about a single feature

What does the decision boundary look like for boosted 
decision stumps?

87

Boosted decision stumps

One of the most common classifiers to use is a decision 
tree:

- can use a shallow (2-3 level tree)
- even more common is a 1-level tree

- called a decision stump J
- asks a question about a single feature

- Linear classifier!
- Each stump defines the weight for that dimension

- If you learn multiple stumps for that dimension then it’s the 
weighted average

88

Boosting in practice

Very successful on a wide range of problems

One of the keys is that boosting tends not to overfit, even for a 
large number of iterations

Using <10,000 training examples can fit >2,000,000 parameters!

89

Adaboost application example: 
face detection

90
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Adaboost application example: 
face detection

91 92

To give you some context of importance:

or:

93

“weak” learners

4 Types of “Rectangle filters”
(Similar to Haar wavelets 

Papageorgiou, et al. )

Based on 24x24 grid:
160,000 features to choose from g(x) = 

sum(WhiteArea) - sum(BlackArea)

94
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“weak” learners

F(x) =       α1 f1(x)    +    α2  f2(x)    +  ...

fi(x) =  1   if gi(x) > θi

-1   otherwise

95

Example output

96

Solving other “Face” Tasks 

Facial Feature Localization

Demographic
Analysis

Profile Detection 

97

“weak” classifiers learned

98
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Bagging vs Boosting

http://arxiv.org/pdf/1106.0257.pdf
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Boosting Neural Networks

Ada-Boosting
Arcing
Bagging

White bar represents 1
standard deviation

Change in error rate over 
standard classifier 
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Boosting Decision Trees

101

http://arxiv.org/pdf/1106.0257.pdf

